首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nylon 66 films with varying spherulite size but almost constant percentages of crystallinity were prepared (melt method). These films were degraded by NO2 over a range of temperatures from 35 to 65°C. Random chain scission took place except in the initial stages at low temperatures at which some crosslinking occurred. Observation of the films with the extent of degradation under polarized light revealed that dark bands developed around and also inside spherulite boundaries that became wider with the extent of degradation. This indicates that amorphous material is formed during random chain scission; the spherulites remained practically intact, however. The experimental chain scission rate constants did not change essentially with spherulite diameter until small diameters were reached, at which time the rate constants increased noticeably. Degradation can be accounted for by chain scission in amorphous and interfacial regions; in the latter the rate constants increased with this area and in addition main chain links were weaker in fold regions, due to strain energy, than normal ones in amorphous regions. The energy of activation for chain scission was compatible with a predominantly diffusion-controlled process.  相似文献   

2.
The degradation of polypropylene (PP), dissolved in n‐alkanes at high temperatures and pressures, during the solution discharge to ambient conditions was experimentally studied. Molecular weight distributions (MWD) of the solubilized PP were measured by gel permeation chromatography. The MWD curves of PP obtained after discharge of the polymer solution shift to the low molecular weight side of the distribution and the polydispersity is reduced. In this work, a systematic study on the discharge products was performed to elucidate the degradation mechanism and the effects of temperature and concentration on this phenomenon. Initially, pure polymers, PP and polystyrene (PS) were studied varying the solution temperature. In a second stage, the effect of polymer concentration on chain scission was assessed using experiments on physical blends of PP/PS. In all cases, thermal and oxidative degradation were previously analyzed. Mechanical degradation was found to be the main chain scission mechanism. A negative linear functionality of the chain scission was found in both temperature and polymer concentration. To analyze the relationship between polymer degradation and molecular weight, the chain scission distribution function was calculated. On this basis, a critical molecular weight for the beginning of chain scission was obtained. This value is a function of temperature but remains constant with concentration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 455–465, 2007  相似文献   

3.
A simple method to determine the chain scission mechanism of the oxidative degradation of rubber vulcanizates is proposed. The method involves the measurement of oxidative stress decay and the change in sol fraction, which allow us to distinguish whether scission occurs randomly along the main chain, near crosslinks or of crosslinks. The applicability of this method was well established using natural rubber vulcanizates as the reference samples. The chain scission of cis-1,4-polyisoprene vulcanizaties was proved to take place randomly along the main chain irrespective of their crosslink structure. On the other hand, the chain scission of dicumyl peroxide cured cis-1,4-polybutadiene takes place selectively near crosslinks. It is suggested that the unusual behavior of cis-1,4-polybutadiene vulcanizates is due to the characteristic structure of the crosslinks.  相似文献   

4.
The understanding of the simultaneous transport and chain‐scission phenomena involved in the hydrolysis of bulk‐degrading polymers requires the experimental separation of chain cleavage and water diffusion. The hydrolytic chain cleavage of poly(rac‐lactide) rac‐(PLA) and poly[(rac‐lactide)‐co‐glycolide] (PLGA) is analysed on the basis of monolayer degradation experiments combined with an improved data reduction procedure. Different, partly contradictory models of the hydrolytic degradation and erosion mechanism of PLA and PLGA, namely random chain scission and chain‐end scission, are discussed in the literature. The instantaneous linear area reduction observed for the polymer Langmuir films indicates a chain‐end scission mechanism. As monolayers of end‐capped and non‐end‐capped polymers degrade with exactly the same rate, the observed differences in the degradation kinetics of bulk samples do clearly result from differences in the water penetration into these polymers. A pronounced ‘auto‐inhibition’ effect is observed for the polymers degraded at initially high pH of the aqueous subphase in the absence of buffers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Carboranes attached to silicon through straight-chain alkyl groups were prepared and characterized for thermal stability by TGA and molecular weight change on heating. The monomers for these polymers were prepared generally by platinum-catalyzed addition of a silylhydride to an alkenyl or dialkenyl carborane. Polymerization was effected by hydrolysis-condensation of chlorosilanes, ring opening of cyclosiloxanes, and condensation of alkoxy and chlorosilanes. Two types of polymer structures were prepared, one contained m-carborane in the chain backbone, the other contained o-carborane as pendant alkylcarborane groups. Both types were obtained as elastomers; however, higher proportions of carborane in the polymers reduced elasticity and finally resulted in nonelastomers. TGA of the backbone carborane siloxane polymer indicated degradation at 370°C. in nitrogen and at 235°C. in air. Chain scission, as determined by molecular weight decrease, was observed on heating in nitrogen at 350°C. TGA of the pendant carborane siloxane polymer indicated that degradation in nitrogen and in air occurred at greater than 400°C. However, chain scission, as determined by molecular weight decrease, was observed upon heating at 300°C. in nitrogen.  相似文献   

6.
Reaction products of vacuum and oxidative degradation of poly-p-xylylene have been quantitatively determined by chromatographic analysis as function of time, temperature and oxygen pressure. Respective Arrhenius parameters were also ascertained for some of the reaction products and for the sums of all products. The energies of activation for the sums agree quite satisfactorily with the energies of activation obtained previously by uninterrupted experiments in quartz-spoon reaction vessels. The results found here can be described in terms of mechanisms previously postulated on the basis of the total loss in weight (or volatile production) data. Scission of “weak” links (due to abnormal structures) takes place followed by formation of various products. The whole process is governed by the initial chain scission reaction; however, the energies of activation for each of the products do not need to be identical with that of the chain scission reaction. Each product is formed by a reaction which has its own characteristic number average kinetic chain lengths; the latter have their specific energy of activation values. Oxidative degradation produces the same organic compounds as vacuum degradation and in addition CO, CO2, and H2O. Oxidized intermediate compounds are apparently fairly rapidly decarboxylated and decarbonylated. Oxidative chain scission is appreciably faster than that in vacuum. Almost simultaneous “weak” link and “normal” chain scission are taking place initiating the formation of a number of products.  相似文献   

7.
The degradation of polycaprolactone (PCL) was studied in subcritical and supercritical toluene from 250 to 375 °C at 50 bar. The degradation was also investigated in various solvents like ethylbenzene, o-xylene and benzene at 325 °C and 50 bar. The effect of pressure on degradation was also evaluated at 325 °C at various pressures (35, 50 and 80 bar). The variation of molecular weight with time was analyzed using gel permeation chromatography and modeled using continuous distribution kinetics to evaluate the degradation rate coefficients. PCL degrades by random chain scission in subcritical conditions (250-300 °C) and by chain end scission (325-375 °C) in supercritical conditions in toluene. The degradation of PCL in other solvents at 325 °C was by chain end scission under both subcritical and supercritical conditions indicating that the mode of scission depends on the temperature and not on the supercriticality of the solvent. The thermogravimetric analysis of PCL was investigated at various heating rates (2-24 °C/min) and the activation energy was determined using Friedman, Ozawa and Kissinger methods. It was shown that PCL degrades by random scission at lower temperatures and by chain end scission at higher temperatures again indicating that the mode of scission is dependent on the temperature.  相似文献   

8.
The radiochemical degradation of a polyoxymethylene homopolymer (POM) was used to study the effects of molar mass changes in the crystalline structure. The dose rate was 20 kGy h−1 with doses of up to 30 kGy used. Both WAXS and SAXS were used to analyse the structures. Results showed that, under irradiation, the polymer undergoes random chain scission. The radiochemical yield was found to be G = 1.6 chain scission events per 100 eV. It was found that no crosslinking occurs and that only one chain scission mechanism, leading to the formation of formate groups, operates. Proof for the existence of chemi-crystallization is evidenced by (i) an increase in the crystallinity ratio as well as (ii) a decrease in the amorphous layer thickness. Simple models, derived from Rault’s theory, are used to predict both (i) and (ii) from molar mass values.  相似文献   

9.
This paper is devoted to a comprehensive study of the photo-oxidation of polymeric materials with the goal of correlating modifications of the polymer properties at the molecular and macroscopic levels. Several techniques were used to characterise the modifications of the chemical properties and mechanical behaviour over time under UV light. The methodology was developed on materials used as organic coatings; initially, a well-characterised phenoxy resin (PKHJ®) was chosen as a model and then the approach was applied to an acrylate-melamine thermoset currently used as a topcoat in the automotive industry. Analysis of degraded samples by IR spectroscopy allowed us to propose a photo-oxidation mechanism. This mechanism suggested that chain scission occurred under photo-oxidation. To entirely understand the degradation of the polymers, gel fraction, thermoporosimetry, DMA, AFM nanoindentation and micro-hardness determinations were performed. The results showed that crosslinking reactions occurred in competition with chain scission and explained for the first time why crosslinking reactions were quite prevalent. Based on the obtained results, quantitative correlations were made between the various criteria of degradation, thus relating the chemical structure changes to the mechanical property modifications.  相似文献   

10.
Metallocene and Ziegler-Natta (ZN) linear low density polyethylenes (LLDPEs) of different branch types and contents as well as linear high density polyethylene (HDPE) were exposed to natural and accelerated weather conditions. The degree of UV degradation of exposed samples was measured by rheological techniques and results were compared with unexposed polymers. Dynamic shear measurements were performed in an ARES rheometer in the linear viscoelastic range. The degree of enhancement or reduction in viscosity and elasticity was used as a measure of the degree of cross-linking or chain scission, respectively. The degradation results of LLDPE suggest that both cross-linking and chain scission are taking place. Chain scission dominated the degradation at high levels of short chain branching (SCB) and long exposure times. The degradation mechanism of m-LLDPE and ZN-LLDPE is similar; however, m-LLDPE showed a higher degradation rate than ZN-LLDPE of similar Mw and average SCB. ZN-LLDPE was found to be more stable than a similar m-LLDPE. Comonomer type had little influence on degradation. Dynamic shear rheology was very useful in revealing the influence of different molecular parameters and it exposed the degradation mechanism.  相似文献   

11.
Chain scission was observed during the crystallization of p-xylene in dilute polystyrene solutions. Degradation yields were determined by gel permeation chromatography, as a function of the number of freeze-and-thaw cycles, polymer concentration, and initial polymer molecular weight (M). The rate constant for chain scission Kc increases with the polymer chain length, from 0.021%/cycle at M = 110·103 to 4.7%/cycle at M = 8.5·106. Over the two decades range of investigated molecular weights, Kc follows an empirical scaling law of the form Kc ~ (M ? Mlim)1.17578, where Mlim is a limiting molecular weight ? 29,000 g. mol?1 below which no degradation could be induced. Some propensity for midchain scission was detected, although this tendency was much weaker in comparison to flow-induced degradation. A chain scission model based on crack propagation failed to reproduce the experimental results. To explain the observed dependence of Kc with the square of the radius of gyration, an interfacial stress transmission mechanism between the crystallization fronts and the polymer coil has been proposed. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Poly-p-xylylene prepared by pyrolysis of di-p-xylylene has been degraded under vacuum and in the presence of oxygen as a function of temperature and oxygen pressure. The vacuum pyrolysis is mainly due to “abnormal” structures. Volatiles are initially produced quite slowly, but the reaction accelerates subsequently. Arrhenius equations were derived for various ranges of volatile formation. A mechanism has been formulated consisting of random chain scission followed by depropagation (dimers to pentamers); simulatanously another zip reaction produces hydrogen. The thermal, oxidative degradation has been studied above and below the softening point of the polymer as a function of oxygen pressure. A first-order reaction of volatile formation due to “abnormal” chain scission is followed by normal chain scission, which is also first order. The postulated mechanism leads initially to hydroperoxide formation. Arrhenius equations for volatile formation are different below and above the softening point. Oxygen consumption also follows a first-order reaction with an energy of activation of 31.5 kcal/mole.  相似文献   

13.
The oxidative degradation of poly(α-methylstyrene) initiated by the photodecomposition of azobisisobutyronitrile was studied at 30°C in benzene solution. The progress of the reaction was followed by measuring the rate of chain scission of the polymer. It has been confirmed by GPC measurements that random scission of the polymer chain occurs in the present system. Chain scission did not occur in the absence of AIBN and oxygen. The rate was proportional to the initiation rate and independent of polymer concentration and oxygen pressure under these experimental conditions. Phenol was an effective inhibitor to this reaction. The mechanism of chain scission during oxidation is discussed, and a six-membered transition is proposed.  相似文献   

14.
Studies of the thermal rearrangement and degradation of polyphenylene-ether (PPE) have been carried out by TGA (thermo-gravimetric analysis), GC-MS (gas chromatography-mass spectroscopy) and 1H-NMR. 2,6-Xylenol was a major scission product in the temperature range 420–700 °C, and 3,5-xylenol, as a scission product, decreased with increasing temperature. Four monomeric and eight dimeric scission products were observed at relatively high temperatures. The distribution of the scission products, which changed with increasing temperature, led to the suggestion that rearrangement of the PPE main-chain occurred to form diphenyl methylene groups, followed by thermal degradation.  相似文献   

15.
Molecular weight change studies have shown that the thermal degradation of random copolymers of styrene — namely HIPS, SAN, and ABS-at low temperatures and in air involves random chain scission. The dominant process in the degradation of HIPS is random chain scission due to weak links, whereas in SAN it is intermolecular chain transfer. In ABS, the degradation is initially random scission due to weak links and then mainly intermolecular chain transfer. The infrared spectra show that during degradation the labile weak links are attacked by oxygen and peroxidic free radicals are produced. Via hydrogen abstraction or autoxidation of olefinic links, these free radicals are responsible for the formation of aliphatic ketonic or peroxyester structures, and for isomerization and cyclization. The activation energies of overall degradation of HIPS, SAN, and ABS are 134, 142, and 92 kJ.mol–1 respectively.Part of the PhD dissertation of Mrs. Jaya Nambiar, University of Gorakhpur, Gorakhpur-273001, 1980.  相似文献   

16.
Abstract

The oxidative photolysis of polyvinylpyrrolidone with light of λ = 2537 Å has been studied over a range of oxygen pressures and polymer concentrations. The results show that chain scission and cross linking take place simultaneously. In the range where cross linking is a negligible component, a mechanism based on chain scission due to components which lead to chain scission without intervention of oxygen, and a component which leads to chain scission via hydroperoxide side groups, has been proposed. This mechanism accounts satisfactorily for all observed features of the reaction. The degree of degradation at any one time decreases with oxygen pressure. Cupric ions, with or without oxygen present, have very little influence on the degradation process. However, the UV spectra of PVP in the presence of cupric ions are different from those without them.  相似文献   

17.
Fourier transform infrared spectroscopy has been used in conjunction with differential scanning calorimetric measurements to investigate the nature of molecular degradation and its effect on the phase transition temperatures in irradiated polytetrafluoroethylene (PTFE). Both the 19 and 30°C transitions are observed to exhibit similar shifts to low temperatures upon irradiation. Infrared absorbance subtraction data from irradiated PTFE indicate a continual decrease in sample crystallinity accompanied by an increase in the number of free and bonded ? COOH groups with increasing dose consistent with molecular degradation by chain scission. By comparing infrared band intensities on a number of irradiated PTFE samples with those from short chain perfluoro n-alkanes, it was determined that the overall reduction in chain length caused by irradiation was primarily responsible for the observed reduction in both phase transition temperatures.  相似文献   

18.
《先进技术聚合物》2018,29(8):2224-2229
Poly(vinyl alcohol) (PVA) is a promising biocompatible polymer, whose applicability is limited by its narrow processing window. Here, we adopted a facile approach to broaden the processing windows of PVA based on phosphoric ester of poly(ethylene oxide) (10) nonylphenyl (NP‐10P). Thermal analysis shows that both the melting temperature (Tm) and the glass transition temperature (Tg) of PVA decrease noticeably as NP‐10P content increases, indicating good miscibility of NP‐10P with PVA. The thermal degradation kinetics suggests composites display excellent thermal stability compared with neat PVA. The pyrolysis mechanism of PVA before and after modification with NP‐10P varies from chain unzipping degradation followed by chain random scission to chain random scission. The processing window of PVA is broadened from 9°C to 98°C with low content NP‐10P (5 wt%). Moreover, the composites maintain significant mechanical performance and transparency. This work provides an environmentally friendly and economical method to improve the possibility of thermal melt processing for PVA.  相似文献   

19.
The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 °C. Standard rheograms using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (ns) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition.  相似文献   

20.
The thermal degradation/modification dynamics of poly(-caprolactone) (PCL) was investigated in a thermogravimetric analyzer under non-isothermal and isothermal conditions. The time evolution of the molecular weight distribution during degradation was studied using gel permeation chromatography. Experimental molecular weight evolution and weight loss profile were modeled using continuous distribution kinetics. The degradation exhibited distinctly different behavior under non-isothermal and isothermal heating. Under non-isothermal heating, the mass of the polymer remained constant at initial stages with rapid degradation at longer times. The Friedman and Chang methods of analysis showed a 3-fold change (from 18 to 55–62 kcal mol−1) in the activation energy from low temperatures to high temperatures during degradation. This suggested the governing mechanism changes during degradation and was explained using two parallel mechanisms (random chain scission and specific chain end scission) without invoking the sequential reaction mechanisms. Under isothermal heating, the polymer degraded by pure unzipping of specific products from the chain end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号