首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We propose a sparse approximate inverse preconditioner based on the Sherman-Morrison formula for Tikhonov regularized least square problems. Theoretical analysis shows that, the factorization method can take the advantage of the symmetric property of the coefficient matrix and be implemented cheaply. Combined with dropping rules, the incomplete factorization leads to a preconditioner for Krylov iterative methods to solve regularized least squares problems. Numerical experiments show that our preconditioner is competitive compared to existing methods, especially for ill-conditioned and rank deficient least squares problems.  相似文献   

2.
应用改进的不完全双曲Gram-Schmidt(IHMGS)方法预处理不定最小二乘问题的共轭梯度法(CGILS)、正交分解法(ILSQR)与广义的最小剩余法(GMRES)等迭代算法来求解大型稀疏的不定最小二乘问题.数值实验表明,IHMGS预处理方法可有效提高相应算法的迭代速度,且当矩阵的条件数比较大时,效果更加显著.  相似文献   

3.
A computationally efficient two-level iterative scheme is proposed for the solution of the interface problems with Lagrange multipliers, where the oscillatory part of the solution is resolved by means off smoothing using a new, efficient preconditioner whereas the smooth component of the solution is captured by the collocation-based problem on the auxilliary grid, that is solved directly using a sparse direct solver. A simple adaptive feature is built into the proposed solution method in order to guarantee convergence for ill-conditioned problems. Nmerical results presented for example problems including that of a Boeing crown panel show that the proposed tww-level solution technique outperfrmsnce the standard, single level iterative and direect solvers.  相似文献   

4.
A generalized successive overrelaxation method for least squares problems   总被引:5,自引:0,他引:5  
In this paper a new iterative method is given for solving large sparse least squares problems and computing the minimum norm solution to underdetermined consistent linear systems. The new scheme is called the generalized successive overrelaxation (GSOR) method and is shown to be convergent ifA is full column rank. The GSOR method involves a parameter ρ and an auxiliary matrixP. One can choose matrix P so that the GSOR method only involves matrix and vector operations; therefore the GSOR method is suitable for parallel computations. Besides, the GSOR method can be combined with preconditioning techniques, and therefore can be expected to be more effective. This author's work was supported by Natural Science Foundation of Liaoning Province, China.  相似文献   

5.
Many papers have discussed preconditioned block iterative methods for solving full rank least-squares problems. However very few papers studied iterative methods for solving rank-deficient least-squares problems. Miller and Neumann (1987) proposed the 4-block SOR method for solving the rank-deficient problem. Here a 2-block SOR method and a 3-block SOR method are proposed to solve such problem. The convergence of the block SOR methods is studied. The optimal parameters are determined. Comparison between the 2-block SOR method and the 3-block SOR method is given also.  相似文献   

6.
Discrete solution to nonlinear systems problems that leads to a series of linear problems associated with non-invariant large-scale sparse symmetric positive matrices is herein considered. Each linear problem is solved iteratively by a conjugate gradient method. We introduce in this paper new solvers (IRKS, GIRKS and D-GIRKS) that rely on an iterative reuse of Krylov subspaces associated with previously solved linear problems. Numerical assessments are provided on large-scale engineering applications. Considerations related to parallel supercomputing are also addressed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
This paper proposes new iterative methods for the efficient computation of the smallest eigenvalue of symmetric nonlinear matrix eigenvalue problems of large order with a monotone dependence on the spectral parameter. Monotone nonlinear eigenvalue problems for differential equations have important applications in mechanics and physics. The discretization of these eigenvalue problems leads to nonlinear eigenvalue problems with very large sparse ill-conditioned matrices monotonically depending on the spectral parameter. To compute the smallest eigenvalue of large-scale matrix nonlinear eigenvalue problems, we suggest preconditioned iterative methods: preconditioned simple iteration method, preconditioned steepest descent method, and preconditioned conjugate gradient method. These methods use only matrix-vector multiplications, preconditioner-vector multiplications, linear operations with vectors, and inner products of vectors. We investigate the convergence and derive grid-independent error estimates for these methods. Numerical experiments demonstrate the practical effectiveness of the proposed methods for a model problem.  相似文献   

8.
Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loadings with very few non-zero elements. In this paper, we propose a new sparse PCA method, namely sparse PCA via regularized SVD (sPCA-rSVD). We use the connection of PCA with singular value decomposition (SVD) of the data matrix and extract the PCs through solving a low rank matrix approximation problem. Regularization penalties are introduced to the corresponding minimization problem to promote sparsity in PC loadings. An efficient iterative algorithm is proposed for computation. Two tuning parameter selection methods are discussed. Some theoretical results are established to justify the use of sPCA-rSVD when only the data covariance matrix is available. In addition, we give a modified definition of variance explained by the sparse PCs. The sPCA-rSVD provides a uniform treatment of both classical multivariate data and high-dimension-low-sample-size (HDLSS) data. Further understanding of sPCA-rSVD and some existing alternatives is gained through simulation studies and real data examples, which suggests that sPCA-rSVD provides competitive results.  相似文献   

9.
A fast iterative method for the solution of large, sparse, symmetric, positive definite linear complementarity problems is presented. The iterations reduce to linear iterations in a neighborhood of the solution if the problem is nondegenerate. The variational setting of the method guarantees global convergence.As an application, we consider a discretization of a Dirichlet obstacle problem by triangular linear finite elements. In contrast to usual iterative methods, the observed rate of convergence does not deteriorate with step size.The results presented here were announced at the XI. International Symposium on Mathematical Programming, Bonn, August 1982.  相似文献   

10.
The low rank solution of the Q‐weighted nearest correlation matrix problem is studied in this paper. Based on the property of Q‐weighted norm and the Gramian representation, we first reformulate the Q‐weighted nearest correlation matrix problem as a minimization problem of the trace function with quadratic constraints and then prove that the solution of the minimization problem the trace function is the stationary point of the original problem if it is rank‐deficient. Finally, the nonmonotone spectral projected gradient method is constructed to solve them. Numerical examples illustrate that the new method is feasible and effective. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
1.IntroductionInthispaperweconsiderthefollowingnonlinearprogrammingproblemminimizef(x)subjecttogj(x)2o,jEJ={1,...,m}.(1'1)Extensionstoproblemincludingalsoequalityconstraintswillbepossible.Thefunctionf:W-Rlandgj:Rn-R',jEJaretwicecontinuouslydifferentiable.Inpaxticular,weapplyQP-free(withoutquadraticprogrammingsubproblems),truncatedhybridmethodsforsolvingthelarge-scaJenonlinearprogrammingproblems,inwhichthenumberofvariablesandthenumberofconstraiotsin(1.1)aregreat.Wediscussthecase,wheresecon…  相似文献   

12.
The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) approach when structured matrices are involved and a similarly structured rank deficient approximation of that matrix is desired. In many of those cases the STLS approach yields a Maximum Likelihood (ML) estimate as opposed to, e.g., TLS.In this paper we analyze the STLS problem for Hankel matrices (the theory can be extended in a straightforward way to Toeplitz matrices, block Hankel and block Toeplitz matrices). Using a particular parametrisation of rank-deficient Hankel matrices, we show that this STLS problem suffers from multiple local minima, the properties of which depend on the parameters of the new parametrisation. The latter observation makes initial estimates an important issue in STLS problems and a new initialization method is proposed. The new initialization method is applied to a speech compression example and the results confirm the improved performance compared to other previously proposed initialization methods.  相似文献   

13.
We present an algebraic structured preconditioner for the iterative solution of large sparse linear systems. The preconditioner is based on a multifrontal variant of sparse LU factorization used with nested dissection ordering. Multifrontal factorization amounts to a partial factorization of a sequence of logically dense frontal matrices, and the preconditioner is obtained if structured factorization is used instead. This latter exploits the presence of low numerical rank in some off‐diagonal blocks of the frontal matrices. An algebraic procedure is presented that allows to identify the hierarchy of the off‐diagonal blocks with low numerical rank based on the sparsity of the system matrix. This procedure is motivated by a model problem analysis, yet numerical experiments show that it is successful beyond the model problem scope. Further aspects relevant for the algebraic structured preconditioner are discussed and illustrated with numerical experiments. The preconditioner is also compared with other solvers, including the corresponding direct solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Iain S. Duff 《PAMM》2007,7(1):1140501-1140502
Current problems in scientific computing often require the solution of sets of sparse linear equations of very large order. Particularly for three dimensional problems, it may to be impractical to solve them using a direct method but equally iterative methods may not converge and often standard preconditioning techniques do not work. We thus propose using a hybrid method by which we mean that either a nearby problem or a subproblem is solved by a direct method with the overall problem being solved by an iterative method. We discuss two applications of this at CERFACS in the solution of large scale problems from industry. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
This article combines techniques from two fields of applied mathematics: optimization theory and inverse problems. We investigate a generalized conditional gradient method and its connection to an iterative shrinkage method, which has been recently proposed for solving inverse problems. The iterative shrinkage method aims at the solution of non-quadratic minimization problems where the solution is expected to have a sparse representation in a known basis. We show that it can be interpreted as a generalized conditional gradient method. We prove the convergence of this generalized method for general class of functionals, which includes non-convex functionals. This also gives a deeper understanding of the iterative shrinkage method.  相似文献   

16.
Free-discontinuity problems describe situations where the solution of interest is defined by a function and a lower-dimensional set consisting of the discontinuities of the function. Hence, the derivative of the solution is assumed to be a ‘small’ function almost everywhere except on sets where it concentrates as a singular measure. This is the case, for instance, in crack detection from fracture mechanics or in certain digital image segmentation problems. If we discretize such situations for numerical purposes, the free-discontinuity problem in the discrete setting can be re-formulated as that of finding a derivative vector with small components at all but a few entries that exceed a certain threshold. This problem is similar to those encountered in the field of ‘sparse recovery’, where vectors with a small number of dominating components in absolute value are recovered from a few given linear measurements via the minimization of related energy functionals. Several iterative thresholding algorithms that intertwine gradient-type iterations with thresholding steps have been designed to recover sparse solutions in this setting. It is natural to wonder if and/or how such algorithms can be used towards solving discrete free-discontinuity problems. The current paper explores this connection, and, by establishing an iterative thresholding algorithm for discrete free-discontinuity problems, provides new insights on properties of minimizing solutions thereof.  相似文献   

17.
The perturbation analysis of weighted and constrained rank‐deficient linear least squares is difficult without the use of the augmented system of equations. In this paper a general form of the augmented system is used to get simple perturbation identities and perturbation bounds for the general linear least squares problem both for the full‐rank and rank‐deficient problem. Perturbation identities for the rank‐deficient weighted and constrained case are found as a special case. Interesting perturbation bounds and condition numbers are derived that may be useful when considering the stability of a solution of the rank‐deficient general least squares problem. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A computational procedure is developed for determining the solution of minimal length to a linear least squares problem subject to bounds on the variables. In the first stage, a solution to the least squares problem is computed and then in the second stage, the solution of minimal length is determined. The objective function in each step is minimized by an active set method adapted to the special structure of the problem.The systems of linear equations satisfied by the descent direction and the Lagrange multipliers in the minimization algorithm are solved by direct methods based on QR decompositions or iterative preconditioned conjugate gradient methods. The direct and the iterative methods are compared in numerical experiments, where the solutions are sought to a sequence of related, minimal least squares problems subject to bounds on the variables. The application of the iterative methods to large, sparse problems is discussed briefly.This work was supported by The National Swedish Board for Technical Development under contract dnr 80-3341.  相似文献   

19.
In wide-area surveillance radar systems, ground moving target indication is the main task. The underlying mathematical problem is to decompose a complex matrix into a low rank matrix and a structured sparse matrix. In this paper, we show that such decomposition has a unique solution under reasonable assumptions. We propose a phase-based model to fully describe the special sparse structure. An alternating direction method of multipliers is implemented to solve the resulting nonconvex complex matrix problem. Simulation results verify the superior efficiency and the improvement of the new model.  相似文献   

20.
A new method of calculation of singular values and left and right singular vectors of arbitrary nonsquare matrices is proposed. The method allows one to avoid solutions of high rank systems of linear equations of singular value decomposition problems, which makes it not sensitive to ill-conditioness of the decomposed matrix. On the base of the Eckart–Young theorem, it was shown that each second order r-rank tensor can be represented as a sum of the first rank r-order “coordinate” tensors. A new system of equations for “coordinate” tensor generator vectors was obtained. An iterative method of solution of the system was elaborated. Results of the method were compared with classical methods of solutions of singular value decomposition problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号