首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the facial structure of the convex hull of integer vectors satisfying a system of alldifferent predicates, also called an alldifferent system. The underlying analysis is based on a property, called inclusion, pertinent to such a system. For the alldifferent systems for which this property holds, we present two families of facet-defining inequalities, establish that they completely describe the convex hull and show that they can be separated in polynomial time. Consequently, the inclusion property characterises a group of alldifferent systems for which the linear optimization problem (i.e. the problem of optimizing a linear function over that system) can be solved in polynomial time. Furthermore, we establish that, for systems with three predicates, the inclusion property is also a necessary condition for the convex hull to be described by those two families of inequalities. For the alldifferent systems that do not possess that property, we establish another family of facet-defining inequalities and an accompanied polynomial-time separation algorithm. All the separation algorithms are incorporated within a cutting-plane scheme and computational experience on a set of randomly generated instances is reported. In concluding, we show that the pertinence of the inclusion property can be decided in polynomial time.  相似文献   

2.
We show that polytopes obtained as the convex hull of a random set of half-integral points of the 0/1 cube have rank as high as Ω(logn/loglogn) with positive probability—even if the size of the set relative to the total number of half-integral points of the cube tends to 0. The high rank is due to certain obstructions. We determine the exact threshold number, when those cease to exist.  相似文献   

3.
Finding the convex hull of a finite set of points in Euclidean space was one of the first problems explored in the field of computational geometry. In two dimensions a variety of algorithms have been developed and analyzed. For higher dimensions the problems are less well understood. Several “convex hull” problems are defined, solved, and analyzed here in terms of the size of the input and output. In all cases these solutions are the best of the known algorthms. The problems include enumerating the facets of the convex hull, computing the facial lattice of the convex hull and producing a new compact structure representing the combinatorial type of the convex hull. In addition, deciding the combinatorial equivalence of two polytopes is shown to be coNP-hard.  相似文献   

4.
Color red and blue the n vertices of a convex polytope \(\mathcal{P}\) in ?3. Can we compute the convex hull of each color class in o(nlog?n) time? What if we have more than two colors? What if the colors are random? Consider an arbitrary query halfspace and call the vertices of \(\mathcal{P}\) inside it blue: can the convex hull of the blue points be computed in time linear in their number? More generally, can we quickly compute the blue hull without looking at the whole polytope? This paper considers several instances of hereditary computation and provides new results for them. In particular, we resolve an eight-year old open problem by showing how to split a convex polytope in linear expected time.  相似文献   

5.
The paper addresses the problem of solving linear algebraic systems the elements of which are, in the general case, nonlinear functions of a given set of independent parameters taking on their values within prescribed intervals. Three kinds of solutions are considered: (i) outer solution, (ii) interval hull solution, and (iii) inner solution. A simple direct method for computing a tight outer solution to such systems is suggested. It reduces, essentially, to inverting a real matrix and solving a system of real linear equations whose size n is the size of the original system. The interval hull solution (which is a NP-hard problem) can be easily determined if certain monotonicity conditions are fulfilled. The resulting method involves solving n+1 interval outer solution problems as well as 2n real linear systems of size n. A simple iterative method for computing an inner solution is also given. A numerical example illustrating the applicability of the methods suggested is solved.  相似文献   

6.
An efficient and numerically correct program called FastHull for computing the convex hulls of finite point sets in the plane is presented. It is based on the Akl-Toussaint algorithm and the MergeHull algorithm. Numerical correctness of the FastHull procedure is ensured by using special routines for interval arithmetic and multiple precision arithmetic. The FastHull algorithm guaranteesO(N logN) running time in the worst case and has linear time performance for many kinds of input patterns. It appears that the FastHull algorithm runs faster than any currently known 2D convex hull algorithm for many input point patterns.  相似文献   

7.
An n log n lower bound is found for linear decision tree algorithms with integer inputs that either identify the convex hull of a set of points or compute its cardinality.  相似文献   

8.
Integrated Preference Functional (IPF) is a set functional that, given a discrete set of points for a multiple objective optimization problem, assigns a numerical value to that point set. This value provides a quantitative measure for comparing different sets of points generated by solution procedures for difficult multiple objective optimization problems. We introduced the IPF for bi-criteria optimization problems in [Carlyle, W.M., Fowler, J.W., Gel, E., Kim, B., 2003. Quantitative comparison of approximate solution sets for bi-criteria optimization problems. Decision Sciences 34 (1), 63–82]. As indicated in that paper, the computational effort to obtain IPF is negligible for bi-criteria problems. For three or more objective function cases, however, the exact calculation of IPF is computationally demanding, since this requires k (⩾3) dimensional integration.In this paper, we suggest a theoretical framework for obtaining IPF for k (⩾3) objectives. The exact method includes solving two main sub-problems: (1) finding the optimality region of weights for all potentially optimal points, and (2) computing volumes of k dimensional convex polytopes. Several different algorithms for both sub-problems can be found in the literature. We use existing methods from computational geometry (i.e., triangulation and convex hull algorithms) to develop a reasonable exact method for obtaining IPF. We have also experimented with a Monte Carlo approximation method and compared the results to those with the exact IPF method.  相似文献   

9.
IntervalComputations‘LinearSystems’ is a Mathematica package supporting tools for solving parametric and nonparametric linear systems involving uncertainties. It includes a variety of functions, implementing different interval techniques, that help in producing sharp and rigorous results in validated interval arithmetic. The package is designed to be easy to use, versatile, to provide a necessary background for further exploration, comparisons and prototyping, and to provide some indispensable tools for solving parametric interval linear systems. This paper presents the functionality, provided by the current version of the package, and briefly discusses the underlying methodology. A new hybrid approach for sharp parametric enclosures, that combines parametric residual iteration, exact bounds, based on monotonicity properties, and refinement by interval subdivision, is outlined.  相似文献   

10.
In this paper, we study properties of general closed convex sets that determine the closedness and polyhedrality of the convex hull of integer points contained in it. We first present necessary and sufficient conditions for the convex hull of integer points contained in a general convex set to be closed. This leads to useful results for special classes of convex sets such as pointed cones, strictly convex sets, and sets containing integer points in their interior. We then present a sufficient condition for the convex hull of integer points in general convex sets to be a polyhedron. This result generalizes the well-known result due to Meyer (Math Program 7:223–225, 1974). Under a simple technical assumption, we show that these sufficient conditions are also necessary for the convex hull of integer points contained in general convex sets to be a polyhedron.  相似文献   

11.
Let ${C \subset \mathbb{R}^n}$ be a convex body. We introduce two notions of convexity associated to C. A set K is C-ball convex if it is the intersection of translates of C, or it is either ${\emptyset}$ , or ${\mathbb{R}^n}$ . The C-ball convex hull of two points is called a C-spindle. K is C-spindle convex if it contains the C-spindle of any pair of its points. We investigate how some fundamental properties of conventional convex sets can be adapted to C-spindle convex and C-ball convex sets. We study separation properties and Carathéodory numbers of these two convexity structures. We investigate the basic properties of arc-distance, a quantity defined by a centrally symmetric planar disc C, which is the length of an arc of a translate of C, measured in the C-norm that connects two points. Then we characterize those n-dimensional convex bodies C for which every C-ball convex set is the C-ball convex hull of finitely many points. Finally, we obtain a stability result concerning covering numbers of some C-ball convex sets, and diametrically maximal sets in n-dimensional Minkowski spaces.  相似文献   

12.
In interval computations, the range of each intermediate result r is described by an interval r. To decrease excess interval width, we can keep some information on how r depends on the input x=(x 1,...,x n ). There are several successful methods of approximating this dependence; in these methods, the dependence is approximated by linear functions (affine arithmetic) or by general polynomials (Taylor series methods). Why linear functions and polynomials? What other classes can we try? These questions are answered in this paper.  相似文献   

13.
It is shown that, on a closed convex subset X of a real Hausdorff locally convex space E, a continuous linear functional x′ on E has an extremum at an extreme point of X, provided X contains no line and X ∩ (x′)?1 (λ0) is non-empty and weakly compact for some real λ0. It is also shown that any weakly locally compact closed convex subset of E that contains no line is the sum of its asymptotic cone and the closed convex hull of its extreme points.  相似文献   

14.
It is shown that a Banach space E has the Radon-Nikodym property (equivalently, every bounded subset of E is dentable) if and only if every bounded closed convex subset of E is the closed convex hull of its strongly exposed points. Using recent work of Namioka, some analogous results are obtained concerning weak1 strongly exposed points of weak1 compact convex subsets of certain dual Banach spaces.  相似文献   

15.
The original motivation for this paper was to provide an efficient quantitative analysis of convex infinite (or semi-infinite) inequality systems whose decision variables run over general infinite-dimensional (resp. finite-dimensional) Banach spaces and that are indexed by an arbitrary fixed set J. Parameter perturbations on the right-hand side of the inequalities are required to be merely bounded, and thus the natural parameter space is l ??(J). Our basic strategy consists of linearizing the parameterized convex system via splitting convex inequalities into linear ones by using the Fenchel?CLegendre conjugate. This approach yields that arbitrary bounded right-hand side perturbations of the convex system turn on constant-by-blocks perturbations in the linearized system. Based on advanced variational analysis, we derive a precise formula for computing the exact Lipschitzian bound of the feasible solution map of block-perturbed linear systems, which involves only the system??s data, and then show that this exact bound agrees with the coderivative norm of the aforementioned mapping. In this way we extend to the convex setting the results of Cánovas et?al. (SIAM J. Optim. 20, 1504?C1526, 2009) developed for arbitrary perturbations with no block structure in the linear framework under the boundedness assumption on the system??s coefficients. The latter boundedness assumption is removed in this paper when the decision space is reflexive. The last section provides the aimed application to the convex case.  相似文献   

16.
As shown in [D. Hoffman, H. Jordon, Signed graph factors and degree sequences, J. Graph Theory 52 (2006) 27-36], the degree sequences of signed graphs can be characterized by a system of linear inequalities. The set of all n-tuples satisfying this system of linear inequalities is a polytope Pn. In this paper, we show that Pn is the convex hull of the set of degree sequences of signed graphs of order n. We also determine many properties of Pn, including a characterization of its vertices. The convex hull of imbalance sequences of digraphs is also investigated using the characterization given in [D. Mubayi, T.G. Will, D.B. West, Realizing degree imbalances of directed graphs, Discrete Math. 239 (2001) 147-153].  相似文献   

17.
For a given pair of finite point setsP andQ in some Euclidean space we consider two problems: Problem 1 of finding the minimum Euclidean norm point in the convex hull ofP and Problem 2 of finding a minimum Euclidean distance pair of points in the convex hulls ofP andQ. We propose a finite recursive algorithm for these problems. The algorithm is not based on the simplicial decomposition of convex sets and does not require to solve systems of linear equations.  相似文献   

18.
This paper studies the Fermat point in Hilbert spaces for a system of n distinct points. We prove the existence of the Fermat point and we determine its location in the convex hull of the given system of points. A new concept of Fermat point for a non–discrete set of points is introduced and there are proved similar results to discrete case. In the second part of this paper we give close form formulas of Fermat point for a system of 3 and 4 distinct points. We also describe some iterative methods to find the Fermat point for a system of more than 4 distinct points.  相似文献   

19.
Assume that a set of imprecise points in the plane is given, where each point is specified by a region in which the point will lie. Such a region can be modelled as a circle, square, line segment, etc. We study the problem of maximising the area of the convex hull of such a set. We prove NP-hardness when the imprecise points are modelled as line segments, and give linear time approximation schemes for a variety of models, based on the core-set paradigm.  相似文献   

20.
Many properties of finite point sets only depend on the relative position of the points, e.g., on the order type of the set. However, many fundamental algorithms in computational geometry rely on coordinate representations. This includes the straightforward algorithms for finding a halving line for a given planar point set, as well as finding a point on the convex hull, both in linear time. In his monograph Axioms and Hulls, Knuth asks whether these problems can be solved in linear time in a more abstract setting, given only the orientation of each point triple, i.e., the set?s chirotope, as a source of information. We answer this question in the affirmative. More precisely, we can find a halving line through any given point, as well as the vertices of the convex hull edges that are intersected by the supporting line of any two given points of the set in linear time. We first give a proof for sets realizable in the Euclidean plane and then extend the result to non-realizable abstract order types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号