首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental stress cracking (ESC) in poly(methyl methacrylate) under different humidity conditions has been investigated. Constant stress‐intensity factor (K) ring‐type specimens were prepared, and all specimens were equilibrated at five different humidity conditions for about two years. ESC tests were carried out under the same humidity as specimens had been stored. Acoustic emission (AE) signals during ESC tests were also measured to examine the crack‐growth behavior. The threshold K value (Kth) tended to increase with increasing humidity. At a relative humidity (RH) of 11%, crack growth occurred gradually until 40 ks under a K value of 0.70 MPam1/2, and then the crack‐growth rate began to increase and AE events were observed. A laser microscopic observation indicated that the crack extended by the coalescence between a main crack and a microcrack ahead of the main crack tip. AE signals generated are considered to be associated with the coalescence. At 98% RH, an incubation period where no crack growth was observed existed under a K value of 0.94 MPam1/2, but the crack began to grow suddenly after that incubation period. This suggests that the craze at the crack tip may become weaker with increasing loading time under high humidity. Although the crack‐growth rate at 98% RH was higher than that at 11% RH, no AE events were observed. This suggests that the crack extended stably in the craze at a crack tip, and sorbed water may make the craze growth easy. All the results suggest that two different ESC mechanisms are activated depending on sorbed water that are varied by humidity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 1–9, 2002  相似文献   

2.
BST/Si-NPA复合薄膜的湿敏电容特性研究   总被引:1,自引:0,他引:1  
本文采用溶胶-凝胶法和旋涂工艺,以Si-NPA为衬底,制备了钛酸锶钡(BST)/Si-NPA复合薄膜,并对其形貌、结构及湿敏电容特性进行了研究。结果表明,环境的相对湿度(RH)、测试信号频率和退火温度均对湿敏电容特性具有较大影响。在100 Hz的测试信号频率下,当环境的相对湿度从11%上升到95%时,BST/Si-NPA湿敏元件的电容增量可达起始值的4 400%,显示出较高的湿度敏感性。同时,元件的响应时间和恢复时间均约为42 s,表现出较快的时间响应和均衡的吸附/脱附。最后,通过复阻抗法讨论了元件的感湿机理。  相似文献   

3.
Poly(vinyl pyrrolidone) (PVP) is widely used for bioengineering and pharmaceutical applications, and its adhesion characteristics are critical. When used as a binder in pharmaceutical granulation, it covers the resultant granules and governs their surface properties. The intrinsic adhesion forces of PVP toward common hydrophobic (magnesium stearate) and hydrophilic (lactose) pharmaceutical materials have been studied as a function of relative humidity (RH). The effect of RH on adhesion force was more significant for the PVP/hydrophilic material than the PVP/hydrophobic material. Adhesion was lowest between 20 and 40% RH, and it increased at RH above 40% and below 20%. This is likely to be due to the development of capillary and triboelectrification forces, respectively. In a nano-indentation experiment using a silicon tip at room temperature, the PVP surface underwent a glass transition at 70% RH. This result suggests that surface softening contributes to the increased PVP adhesion at RH above 70%. To adjust the adhesion properties of PVP, humidity control should be an essential part of research and development. Effect of humidity on the adhesion forces between PVP and lactose (LT) or magnesium stearate (MS).  相似文献   

4.

This study was intended to determine the variation rules of the radon emanation coefficient in dump-leached uranium tailing sand. A temperature and humidity controllable device for measuring the emanation coefficient was designed. Tailing sand with different grain sizes was selected from uranium tailings in southern China. An orthogonal experimental design was conducted to determine the radon emanation coefficient of the sand under different temperatures, humidities and grain sizes. Experimental results showed that the air temperature, humidity and grain size have significant effects on the emanation coefficient. The variation rules regarding the radon emanation coefficient showed significant reference value.

  相似文献   

5.
Factors affecting the functionalization of mica with aminosilanes, in particular, aminopropyltriethoxysilane (APTES-mica), formed from the vapor phase have been systematically studied. The relative humidity (RH) during vapor deposition has been varied, and postdeposition treatment through baking has been used, as well as the comparison of mono and trifunctionality, to investigate how optimal surfaces for AFM imaging of DNA are formed. It is found that the stability of the APTES layers is a consequence of lateral polymerization and not covalent attachment to the mica substrate. At low RH (<25%), DNA adopts an open, well-resolved conformation, whereas at >25% RH, DNA surface-induced condensation occurs. Contact mode AFM scratching experiments show that two main structures of the silane layer exist at different humidity: a monolayer exists at RH < 25%, and a bilayer structure exists at RH > 25%. Finally, structural changes that these two layer types undergo after baking at 150 degrees C were investigated by AFM and X-ray photoelectron spectroscopy (XPS), and these now prevented DNA from binding to the APTES-mica, except in the presence of Mg(II) ions.  相似文献   

6.
In the presented work an optical levitation technique performed by means of a focused laser beam, Mie and Raman spectroscopy have been utilized for measuring hygroscopic growth curves and composition of laboratory generated single ammonium sulfate (AS) and internally mixed ammonium sulfate-glutaric acid (GA) droplets in the micrometer range. The generated particles have been found to immediately supersaturate (above 45wt% for AS) at 297 K after capturing in the laser beam. Further increase of the relative humidity (RH) up to 85% does not dilute the droplets under the saturation point. A spontaneous hygroscopic growth takes place at 73.5-78% RH for pure AS. The particle grows with an average factor of 1.62 at the deliquescence relative humidity (DRH). Efflorescence of AS occurs at 43% RH with a corresponding concentration of more than 85wt%. Independent of the mixing ratios in ranges 25/75, 50/50, 75/25% AS/GA mixed particles don't exist as a metastable supersaturated solution droplets in the 35-85% RH range. Instead of growing with increasing relative humidity internally mixed particles build up a solid crystalline layer on the surface. This crystalline phase is not further influenced by ambient relative humidities.  相似文献   

7.
Humidity sensors have found wide applications in industry production, process control, environment monitoring, storage, electrical applications, etc.. Polymer electrolytes have been used in the preparation of resistive-type humidity sensors in the past ye…  相似文献   

8.
The effect of humidity on sheep wool during irradiation by an accelerated electron beam was examined. Each of the samples with 10%, 53%, and 97% relative humidity (RH) absorbed a dose of 0, 109, and 257 kGy, respectively. After being freely kept in common laboratory conditions, the samples were subjected to batch Co(II) sorption experiments monitored with VIS spectrometry for different lapses from electron beam exposure. Along with the sorption, FTIR spectral analysis of the wool samples was conducted for cysteic acid and cystine monoxide, and later, the examination was completed, with pH measuring 0.05 molar KCl extract from the wool samples. Besides a relationship to the absorbed dose and lapse, the sorptivity results showed considerable dependence on wool humidity under exposure. When humidity was deficient (10% RH), the sorptivity was lower due to limited transformation of cystine monoxide to cysteic acid. The wool pre-conditioned at 53% RH, which is the humidity close to common environmental conditions, demonstrated the best Co(II) sorptivity in any case. This finding enables the elimination of pre-exposure wool conditioning in practice. Under excessive humidity of 97% RH and enough high dose of 257 kGy, radiolysis of water occurred, deteriorating the sorptivity. Each wool humidity, dose, and lapse showed a particular scenario. The time and humidity variations in the sorptivity for the non-irradiated sample were a little surprising; despite the absence of electron irradiation, relevant results indicated a strong sensitivity to pre-condition humidity and lapse from the start of the monitoring.  相似文献   

9.
The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ~1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.  相似文献   

10.
A passive diffusion method for the determination of radon concentration has been optimised and calibrated. The device consists of a scintillation vial containing activated charcoal, a diffusion barrier and a desiccant agent. The response to diverse atmospheric humidity and variable exposure intervals was studied. The result is a detector independent of atmospheric humidity till 7 days of exposure. The method was compared with electret detectors (US EPA) with very satisfactory results. The advantages of this method are its simplicity, low cost, low detection limit, the total automatization of the measurement and its total independence of humidity to measure in a wide range of radon concentrations.  相似文献   

11.
Probe molecule spectroscopy and hygroscopic growth curves characterize the morphology of surfactant-coated aerosol particles as a function of relative humidity (RH). This study focuses on particles composed of either potassium iodide or sodium chloride and sodium dodecyl sulfate (SDS). At high RH, these mixed particles assume a reverse micelle type structure, and at low RH, they comprise a solid core of either KI or NaCl coated with SDS and water. The deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of the inorganic fraction of the mixed particles are very similar to those of the pure salts. The surface polarity and morphology sampled by the coumarin 314 probe molecule ranges from that of a water-organic interface to that of an ionic surface and depends strongly on the RH and the amount of SDS. When the SDS coverage of the droplet just prior to efflorescence reaches approximately one monolayer, a thin soap film persists on the surface to values of RH much lower than the ERH. Both the electronic spectroscopy and photoelectric charging efficiency show a separate efflorescence for this layer at RH < 5%. The spectroscopy further reveals that there is a hysteresis associated with this low RH phase transition for both KI and NaCl cores.  相似文献   

12.
研究了空气中痕量氡的动态稳定技术和氡及其子体浓度的准确测量方法.研制了具有氡浓度自动控制、温湿度调控、气溶胶发生/采集等功能的标准氡室,并建立了主氡室标称体积达4 m3的氡测量仪器检定/校准装置和氡子体放射性气溶胶检测与实验研究平台.研究表明,本装置测氡浓度范围为370~20000 Bq/m3;检测精确度达3%;单点校...  相似文献   

13.
TiO2 thin films were obtained on glass slide substrates by the sol–gel technique. The substrates were coated by the immersion-removal method, at a constant withdrawal speed. The TiO2 precursor solution and the substrate were maintained in a closed box with a controlled relative humidity (RH) during the removal of the substrate. The RH was varied in the 30–90% range in steps of 20%. The films were dried and after that sintered in an open atmosphere. The effect of the RH was studied on the structural, optical and photocatalytic properties. The films are polycrystalline with an anatase phase and show a high optical transmission in the UV–Vis range. The photocatalytic activity was evaluated by the photobleaching of methylene blue in an aqueous solution. The best photocatalytic activity was obtained for the films with 90% RH, this fact is mainly attributed to the highest porosity value obtained for these films.  相似文献   

14.
The Meta-Nitroaniline (m-NA) doped (by varying weight percentage (wt. %)) gold/polyvinyl alcohol (Au/PVA) nanocomposites were synthesized using gold salt and hydrazine hydrate (HH) by in situ process. The composite was coated on ceramic rods having two end electrodes by drop casting method for studying their electrical behavior at different relative humidity (RH) levels, ranging from 4 to 95% RH at room temperature. The optimized wt. % was used to prepare coatings of various thicknesses (20-40 μm) of the films. As the humidity decreases, the resistance increases. The low humidity sensing characteristic can be tailored by varying wt. % of m-NA and thicknesses of the nanocomposite films. The resistive-humidity sensor shows two regions of sensitivity having highest sensitivity for lower RH. The sensor response and recovery time is about 6-10 s and 52 s respectively. The dynamic range of variation of the resistance allows a promising use of the films as a humidity sensor. The material was characterized by X-ray diffraction (XRD) and impedance spectroscopy at 60% RH.  相似文献   

15.
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.  相似文献   

16.
The radioactive gas radon, intermediate term of the decay series of uranium and thorium, is the main contamination source of underground places and may be a risk for high concentration and long exposure time. European and Italian law requires radon concentration to be measured in workplaces and, if the "action level" of 500 Bq/m3 is reached, proper actions must be made in order to decrease the dose commitment. Considering natural showcaves or artificial cavities open to public, the exposition of the visitors is frequently small, due to the short residence time, but accompanying people, remaining underground for long time, may be subject to appreciable dose and the radon concentration should therefore be monitored. The high humidity in natural caves may impair the use of some measuring devices. Therefore, different detection methods were compared (ZnS scintillation counters, E-PERM electret ionisation chambers, cellulose nitrate alpha-track dosimeters) to select the best procedure for long-term investigation. The LR-115 (Kodak) alpha-track dosimeters were insensitive to humidity and permitted to monitor a great number of places at the same time. Measurements have been carried out in the speleological and archaeological site of the Toirano's Caves (Savona, Liguria, Italy) and several points were monitored for two years. Radon concentration strongly depends on the site and changes during the year, due to the difference between internal and external temperature. The maximum dose commitment during the visitors tour, considering the average yearly value of radon concentration, was found to be between 1.5 and 4 microSv. It was found that no risk exists for visitors, but the evaluation of the dose absorbed by the guides and their classification according to the radiation protection law requires a complete monitoring of the average yearly concentration of radon and of the total time spent by each worker into the cave.  相似文献   

17.
Su PG  Uen CL 《Talanta》2005,66(5):1247-1253
A composite material of dispersed organic silicon sol and poly(2-acrylamido-2-methylpropane sulfonate) (poly-AMPS) was used to make humidity sensor without protective film or complicated chemical procedures. The organic silicon sol was dispersed well in the poly-AMPS without using dispersion agent. Parameters that may affect the water-resistive but humidity-sensitive characteristic of composite material, the adding amount of organic silicon sol solution and the film of thermal treatment time, were investigated. The microstructure of the material was analyzed, and the humidity sensing and electrical properties of the sensor were measured. The sensor well responded to humidity with a relatively good linearity, though it depended on the applied frequency. The temperature influence between 15 and 35 °C was within −0.17 % relative humidity (RH)/°C in the range of 30–90% RH. The activation energy was maximum around 40% RH. The sensor showed the hysteresis within 5.9%, fast response time, long-term stability (75 days at least) and satisfactory resistance to high humidity atmosphere (97% RH) and chemical environment (20% C2H5OH vapor). Analyzing the structure and complex impedance plots of organic silicon sol/poly-AMPS was used to explain improvement in humidity sensing properties in comparison with nano-sized SiO2 powder/poly-AMPS films.  相似文献   

18.
The dependence of thermal dehydration behavior of nitrofurantoin monohydrate on humidity was studied. Difference in observed crystallinity of resulting anhydrates under three humidity conditions is discussed in relation to the effect of water vapor molecules. Thermal dehydration of nitrofurantoin monohydrate was measured using a humidity controlled simultaneous measurement instrument for X-ray Diffractometry (XRD) and Differential Scanning Calorimetry (DSC) in dry, 27 °C 91% RH and 60 °C 90% RH nitrogen. Dehydration of nitrofurantoin in dry nitrogen gave a mixture of crystalline and amorphous anhydrates in the temperature range of 124–180 °C followed by crystallization around 185–190 °C. Whereas, dehydration in high humidity atmosphere (60 °C 90% RH or 17.7% H2O–82.3% N2) gave well crystallized anhydrate at 140 °C soon after dehydration. Dehydration in low humidity nitrogen (27 °C 91% RH or 3.2% H2O–96.8% N2) gave not totally crystalline anhydrate, which became pure crystalline at around 190 °C. The effect of high humidity on dehydration and crystallinity of the resulting anhydrate can be attributed to the role of water vapor molecules in two ways such as the acceleration of molecular mobility and high molecular diffusion rate of nitrofurantoin anhydrate, and the formation of hydrogen bonding bridges quickly connecting dehydrated molecules to one another.  相似文献   

19.
The advancing contact angle (thetaadv) of water on thin films ( approximately 1 microm) of poly(ethylene glycol) (PEG) with fluoroalkyl endgroups (6 kg/mol PEG with 10-carbon fluoroalkyl, denoted 6KC10) changes strongly with relative humidity (RH). Films of 6KC10 on silicon wafers pretreated with a fluorinated alkylsilane (TFOS) display thetaadv increasing from 75 degrees at 12% RH to 95 degrees at 94% RH. The surprising transition to nonwetting character at high humidity is attributed to fluoroalkyl groups ordering at the air-hydrogel interface when they are liberated by dissolution of PEG crystallites above 85% RH. When water is withdrawn from a drop on 6KC10, the contact line does not recede. This extreme hysteresis is attributed to restructuring of the gel to bury the fluoroalkyl groups when in contact with water.  相似文献   

20.
The hydrophilicity of pedal mucus trails deposited by snails influences the settlement of marine organisms and can potentially influence the trailing and homing mechanisms of terrestrial snails. The composition of pedal mucus deposited as a trail on a solid substrate by the giant African land snail (Achatina marginata) has been probed non-invasively using infrared ellipsometry. The primary chemical groups in the mucus (in its native state) have been identified through their characteristic infrared absorption frequencies. Water vapour sorption in the mucus trails in equilibrium with the atmosphere was measured as a function of the relative humidity (RH). When RH=84%, the mucus contains 53 volume percent water. The water sorption isotherm of the mucus trail can be described through a Flory–Huggins polymer/solvent interaction parameter of χ=0.54±0.1, which is comparable to the value for some synthetic hydrophilic polymers, such as poly(vinyl pyrrolidone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号