首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43–3.81 g/L; total nitrogen: 90–162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30°C), submesophilic (20°C), and psychrophilic (10°C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L·d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of ducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L·d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated waste-water.  相似文献   

2.
Kinetics and efficiency of Fenton’s and ozonation processes for the pretreatment of two landfill leachates (fresh and mature) resulting from municipal waste disposal were studied. Both samples presented high organic load, high toxicity and low biodegradability. These were the reasons why oxidative treatment was proposed. Fresh and mature leachate showed different behaviors in the oxidation experiments. The final extents of removal were attained in comparable time intervals in both oxidation systems. Maximal removal of organics by the Fenton’s oxidation reached more than 50 % according to COD. Zero or first order kinetics were found the best to describe the organic components (in terms of COD and DOC) removal by the Fenton’s oxidation for both landfill leachates. Higher reaction rate values of the Fenton’s oxidation were achieved with fresh leachate samples. The efficiency of initial organics removal with ozone was about 70 % for mature leachate, while in case of the fresh one only 41 % of COD were removed. The best fits of COD and DOC experimental data from oxidation of fresh and mature leachates were obtained by a combined kinetic model. No significant improvement of the biodegradability of landfill leachates was achieved using these treatment procedures. Regarding toxicity, ozonation showed to be more effective than the Fenton’s oxidation. Advanced oxidation experiments confirmed that the Fenton’s oxidation and ozonation are comparable oxidative treatment techniques for the reduction of organic pollution in the investigated municipal landfill leachates. However, neither of them is effective enough to be used as a pretreatment method followed by biological treatment.  相似文献   

3.
Anaerobic treatment of low-strength brewery wastewater, with influent total chemical oxygen demand (COD) (CODin) concentrations ranging from 550 to 825 mg/L, was investigated in a pilot-scale 225.5-L expanded granular sludge bed (EGSB) reactor. In an experiment in which the temperature was lowered stepwise from 30 to 12 degrees C, the COD removal efficiency decreased from 73 to 35%, at organic loading rates (OLR) of 11-16.5 g COD/L/d. The applied hydraulic retention time (HRT) and liquid upflow velocity (Vup) were 1.2 h and 5.8 m/h, respectively. Under these conditions, the acidified fraction of the CODin varied from 45 to 90%. In addition to the expected drop in reactor performance, problems with sludge retention were also observed. In a subsequent experiment set at 20 degrees C, COD removal efficiencies exceeding 80% were obtained at an OLR up to 12.6 g COD/L/d, with CODin between 630 and 715 mg/L. The values of HRT and Vup applied were 2.1-1.2 h, and 4.4-7.2 m/h, respectively. The acidified fraction of the CODin was above 90%, but sludge washout was not significant. These results indicate that the EGSB potentials can be further explored for the anaerobic treatment of low-strength brewery wastewater, even at lower temperatures.  相似文献   

4.
厌氧悬浮填料生物膜反应器处理费托合成废水   总被引:4,自引:0,他引:4  
采用厌氧悬浮填料生物膜反应器工艺对费托合成废水进行处理,考察了高有机负荷条件下系统的运行情况.有机负荷小于31.1g/(L·d)时,COD去除率达97%以上;当有机负荷从39.7g/(L·d)增加至56.3g/(L·d)时,厌氧反应对COD的去除率从88%降至6l%.实验结果表明,填料生物膜比悬浮污泥具有更高的活性,M...  相似文献   

5.
《印度化学会志》2021,98(12):100240
The performance of zinc oxide (ZnO) as a photocatalyst was evaluated for the treatment of pollutants present in seawater. Batch experimental studies were carried out by varying the dosage of photocatalyst (1–4 ​g/L). The effect of reaction time, pH and the dosage of photocatalyst was evaluated with the percentage removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon (TOC) and the biodegradability (BOD/COD) of the seawater. Response surface methodology-central composite design (RSM-CCD) and artificial neural network-Levenberg Marquardt (ANN-LM) statistical models were employed to optimize the photocatalytic biodegradability (BOD/COD). A quadratic polynomial statistical model was obtained to predict the percentage removal efficiencies of COD, TOC, BOD and biodegradability. For the experimental runs, the maximum percentage removal efficiencies for COD, TOC, BOD was found to be 62.3, 40.1, and 18.8%, respectively. Whereas, the maximum biodegradability was 0.036. As per RSM-CCD and ANN-LM statistical model method the maximum percentage removal efficiencies were found to be COD ​= ​58.14, 60.39%, TOC ​= ​33.74, 40.09%, BOD ​= ​18.47, 18.7% and Biodegradability ​= ​0.0315, 0.0360, respectively. The predicted values from statistical models were well correlated with experimental values. ANN modelling predicted better values for the responses with an average of R2 ​= ​0.99697 than RSM modelling with average R2 ​= ​0.8948.  相似文献   

6.
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l−1 day−1) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 ± 1°C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l−1 day−1, change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l−1 day−1, reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l−1 day−1 the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l−1 day−1 caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.  相似文献   

7.
A photocatalytic reactor with UV/TiO2 was used for the posttreatment of olive mill wastewater after anaerobic digestion. A factorial experimental design was adopted to determine the statistical significance of each parameter tested, namely, initial chemical oxygen demand (COD), pH, treatment time and recirculation flow and possible interactions in three response variables: phenols, color and COD removals. Removal efficiencies of 90.8 ± 2.7%, 79.3 ± 1.9% and 50.3 ± 6.3% were obtained for total phenols (TPh), color and COD respectively. TPh and color were almost completely removed after 24 h of treatment, while the COD removal was partial. Because increasing the treatment time is economically unfeasible a recirculation to the anaerobic reactor should be considered. Regarding the most significant variables, the TPh removal efficiency is dependent of the initial COD concentration; the color removal efficiency decreased with increasing COD concentration and pH; and, the COD removal efficiency is directly linked with the treatment time. The interaction between the initial COD and treatment time affect negatively the response variables tested because of the inactivation of some active sites of the TiO2 paper.  相似文献   

8.
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 °C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.  相似文献   

9.
The increasing generation of sewage sludge and its subsequent treatment are very sensitive environmental problems. For the more stable and sanitary treatment of this sewage sludge, there have been many studies, including the recent attempt to prepare an adsorbent from sewage sludge via recycling. In this study, of the adsorbent preparation methods, chemical activation was utilized, and in order to find the optimum conditions, several variables were tested, such as the activation agent concentration, activation temperature and activation time. The activation agents used in this study were alkaline hydroxides: KOH and NaOH. The properties of prepared adsorbent were also measured by analyzing the iodine adsorptivity and surface area. In addition, the prepared adsorbent, the BOD, COD, SS, T-N and T-P removal efficiencies from the effluent water of a sewage treatment plant were examined via column test. From the test, the optimum conditions for KOH-activation were 1 mol/l, 800 °C and 1.5 h for the activation agent concentration, activation temperature and activation time, respectively; whereas those for NaOH-activation were 1.25 mol/l, 850 °C and 1.5 h. From the application of the prepared adsorbent to the effluent water of the sewage treatment plant, the measured BOD, COD, SS, T-N and T-P removal efficiencies, the P1-800 adsorbent had the highest efficiencies for BOD, COD and SS of 56.68, 57.76 and 81.45%, respectively.  相似文献   

10.
Efforts were made to assess the efficiency of an anaerobic filter packed with porous floating ceramic media and to identify the optimum operational condition of anaerobic filter as a pretreatment of swine wastewater for the subsequent biological removal of nitrogen and phosphorus. A stepwise decrease in hydraulic retention time (HRT) and an increase in organic loading rate (OLR) were utilized in an anaerobic filter reactor at mesophilic temperature (35°C). The optimum operating condition of the anaerobic filter was found to be at an HRT of 1 d. A soluble chemical oxygen demand (COD) removal efficiency of 62% and a total suspended solids removal efficiency of 39% at an HRT of 1 d were achieved with an OLR of 16.0 kg total COD/(m3·d), respectively. The maximum methane production rate approached 1.70 vol of biogas produced per volume of reactor per day at an HRT of 1 d. It was likely that the effluent COD/total Kjeldahl nitrogen ratio, of 22, the COD/total phosphorous ratio of 47, and the high effluent alkalinity >2500 mg/L as CaCO3 of the anaerobic filter operated at an HRT of 1 d was adequate for the subsequent biological removal of nitrogen and phosphorus.  相似文献   

11.
The anaerobic treatment of soft drink wastewater (SDW) was studied in two laboratory reactors—a 1.8-L UASB reactor and a 3-L hybrid reactor-sludge bed containing a layer of polyurethane in the upper part, at 35°C. The highest organic loading rates (OLR) achieved were 13 and 16.5 g COD/L · D for hybrid and UASB reactors, respectively, with the treatment efficiency of about 80% for both reactors. Despite the higher treatment productivity achieved for the UASB reactor, its lower ability to generate a sufficient level of alkalinity led to difficulties in maintaining a stable operation performance. Therefore, the hybrid reactor seems to be indicated for OLR higher than 10 g COD/L · d and HRT lower than 1 D, from the point of view of reliability of these two systems. Both reactors can treat the SDW with pH influent up to 11.0. The feeding of reactors with higher pH influent values led to their quick failure because of alkali shock. The duration of the recovery period after alkali shock was about 1.5-2 mo.  相似文献   

12.
A 15-L anaerobic fixed-film reactor (AFFR) was evaluated for treating a trade effluent containing inhibitory concentrations of persistent branched-chain fatty acids, namely 2-ethylhexanoic acid (2-EHA) and neopentanoic acid (NPA), at a total of 17,000 mg COD/L. The AFFR was packed with fire-expanded clay spheres, and start-up was accomplished in 60 d. The organic load was increased in steps from 1.1 to 8.5 g COD/L/d. Total COD, 2-EHA, and NPA removal efficiencies were maintained above 70, 98, and 75%, respectively. The reactor could recover from a shock load of 150% increase in organic load. Combined mechanisms of organic adsorption and biodegradation rendered the AFFR more stable with shock loads. Mathane gas produced from the process could be used for preheating the effluent.  相似文献   

13.
A modular internal micro-electrolysis Fenton reactor (MIME-Fenton) was specifically designed in order to facilitate the performance of internal micro-electrolysis (IME) technology in the treatment of mature landfill leachate. Excellent COD removal efficiency of 90.9 % by the new reactor of mature landfill leachate was observed in bench-scale treatment, which is 193–399, 415–551, and 226–457 % higher than that of conventional treatments of electrolysis, coagulation–sedimentation, and Fenton, respectively. The innovative concept behind the excellent performance is the novel two-step treatment, similar to the anaerobic–aerobic activated sludge method. It is based on a combination effect of reductive IME and oxidative IME with aeration processes and the integration of electro-aggregation and electro-coagulation. Initial pH and air flow rate were optimized, and the effect of auxiliary in situ regeneration of ferrous iron and generation of H2O2 was further investigated. The reactor was also particularly efficient in removal of color and HA, and in improvement of the BOD5/COD ratio. All these results show that the MIME-Fenton reactor, a new approach of IME, is promising for mature landfill leachate treatment because it is efficient and easy to operate.  相似文献   

14.
The aim of this work was to investigate the effect of different feeding times (2, 4 and 6 h) and applied volumetric organic loads (4.5, 6.0 and 7.5 gCOD L−1 day−1) on the performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) treating effluent from biodiesel production. Polyurethane foam cubes were used as inert support in the reactor, and mixing was accomplished by recirculating the liquid phase. The effect of feeding time on reactor performance showed to be more pronounced at higher values of applied volumetric organic loads (AVOLs). Highest organic material removal efficiencies achieved at AVOL of 4.5 gCOD L−1 day−1 were 87 % at 4-h feeding against 84 % at 2-h and 6-h feeding. At AVOL of 6.0 gCOD L−1 day−1, highest organic material removal efficiencies achieved with 4-h and 6-h feeding were 84 %, against 71 % at 2-h feeding. At AVOL of 7.5 gCOD L−1 day−1, organic material removal efficiency achieved with 4-h feeding was 77 %. Hence, longer feeding times favored minimization of total volatile acids concentration during the cycle as well as in the effluent, guaranteeing process stability and safety.  相似文献   

15.
An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill.  相似文献   

16.
A study was conducted on the treatment of landfill leachate by combining the sequencing batch biofilm reactor (SBBR) method with the electro-Fenton method. The reduction of chemical oxygen demand (COD), biological oxygen demand (BOD5), and ammonia nitrogen (NH 4 + -N) from the leachate by the SBBR method was investigated. For the electro-Fenton experiment, the changes in COD and total organic carbon (TOC) with the increase in H2O2 dosage and electrolysis time under optimal conditions were also analysed. The results showed that the average efficiencies of reduction of COD, BOD5, and NH 4 + -N achieved using the SBBR method were 21.6 %, 54.7 %, and 56.1 %, respectively. The bio-effluent was degraded by the subsequent electro-Fenton process, which was rapid over the first 30 min then subsequently slowed. After 60 min of the electro-Fenton treatment, the efficiencies of reduction of TOC, COD, and BOD5 were 40.5 %, 71.6 %, and 61.0 %, respectively. There is a good correlation between the absorbance of leachate at 254 nm (UV254) and COD or TOC during the electro-Fenton treatment.  相似文献   

17.
Co/Bi催化剂催化湿法氧化降解垃圾渗滤液中的氨氮   总被引:8,自引:0,他引:8  
采用催化湿法氧化(CWAO)技术,以Co/Bi为催化剂,对垃圾渗滤液中氨氮(NH3-N)进行降解处理,并利用GC-MS检测了垃圾渗滤液中含氮有机物的相对含量.结果表明,随着反应温度的升高,CWAO对NH3-N的降解能力逐渐增强,在220,240,260和280℃条件下,NH3-N降解规律符合一级动力学反应(r>0.93,n=6).在升温过程(20~300℃)中,NH3-N浓度变化经历了先升后降两个阶段,并在220℃时达到最大值.GC-MS检测结果表明,在第一阶段,垃圾渗滤液中几种含氮有机物因催化氧化而生成NH3-N;第二阶段,NH3-N逐渐被氧化降解,达到了CWAO技术同时降解有机物和NH3-N的目的.同时,选取垃圾渗滤液中一种含氮有机物2-巯基苯并噻唑进行含氮有机物氮降解机理的验证实验.  相似文献   

18.
Four 3–L aerobic biofilm reactors (ABRI, 2, 3, and 4) treating a highstrength food–processing waste water (10 g chemical oxygen demand [COD]/L) were subject to reactor liquor recirculation rates of 1, 3,15, and 30 L/h, respectively. Treatment performance in terms of COD removal rates of ABRI, 2, and 3 were similar at hydraulic loads of 2.0 g COD/L/d and below. At higher organic loads, ABR3 could achieve a COD removal rate that was over two times higher than that of ABRI and 2. ABR3 could be operated at a maximum organic load that was two times higher than that of ABRI and 2. ABR4 experienced a biofilm sloughing from the packing medium at the beginning of operation. Tracer studies showed that recirculation rate of 1 L/h resulted in a plug–flow pattern in the packed bed of the reactor. On the other hand, recirculation rate of 15 L/h, which was equivalent to recirculating the reactor liquor five times per hour, provided effective mixing in the packed bed. Superior performance of ABR3 was attributed to the effective recirculation of reactor liquor, which diluted and distributed the influent, particularly the oil and grease components.  相似文献   

19.
Many lab-scale studies have been carried out regarding the effect of feed strategy on the performance of anaerobic sequencing batch reactors (ASBR); however, more detailed pilot-scale studies should be performed to assess the real applicability of this type of operation. Therefore, the objective of this work was to assess the effect of feed strategy or fill time in a 1-m3 mechanically stirred pilot-scale sequencing batch reactor, treating 0.65 m3 sanitary wastewater in 8-h cycles at ambient temperature. Two reactor configurations were used: one containing granular biomass (denominated ASBR) and the other immobilized biomass on polyurethane foam as inert support (denominated anaerobic sequencing batch biofilm reactor (AnSBBR)). The reactors were operated under five distinct feed strategies, namely: typical batch and fed-batch for 25%, 50%, 75%, and 100% of the cycle length. Stirring frequency in the ASBR was 40 rpm with two flat-blade turbine impellers and 80 rpm in the AnSBBR with two helix impellers. The results showed that both the ASBR and AnSBBR when operated under typical batch, fed-batch for 50% and 75% of the cycle length, presented improved organic matter removal efficiencies, without significant differences in performance, thus showing important operational flexibility. In addition, the reactors presented operation stability under all conditions.  相似文献   

20.
The performance of an anaerobic sequencing batch reactor (ASBR) was assessed when submitted to increasing organic load with different influent concentrations and cycle lengths. The 5-L mechanically stirred (75 rpm) ASBR contained 2 L of granular biomass and treated 2 L of synthetic wastewater per cycle. Volumetric organic loads (VOLs) from 0.66 to 2.88 g of chemical oxygen demand (COD)/(L x d) were applied by using influent concentrations from 550 to 3,600 mg of COD/L in 8- and 12-h cycles. Reactor stability was maintained for VOLs from 0.66 to 2.36 g of COD/(L x d), with organic matter removal efficiencies for filtered samples (epsilonF) between 84 and 88%. For VOLs from 0.78 to 2.36 g of COD/(L x d) at an influent concentration of 2,000 mg of COD/L, when cycle length was reduced from 12 to 8 h, epsilonF did not vary, yet showed a very distinct behavior from the other conditions. In addition, two operation strategies were studied for VOLs with approximately similar values of 2.36 and 2.08 g of COD/(L x d). One involved operation with an influent concentration of 2,000 mg of COD/L and an 8-h cycle, whereas the other involved an influent concentration of 2,600 mg of COD/L and a 12-h cycle. Only the former resulted in system stability and efficiency. These results indicate that besides organic load, influent concentration and cycle length play a significant role in ASBR systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号