首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chemically modified electrode based on a chitosan-multiwall carbon nanotube (MWNT) coated glassy carbon electrode (GCE) is described, which exhibits an attractive ability to determine dopamine (DA) and ascorbic acid (AA) simultaneously. The modified electrode exhibited a high differential pulse voltammetry (DPV) current response to DA at 0.144 V and AA at -0.029 V (vs. SCE) in a 0.1 mol l(-1) phosphate buffer solution (pH = 7.2). The properties and behaviors of the chitosan-multiwall carbon nanotube modified electrode (MC/GCE) were characterized using cyclic voltammetry (CV) and DPV methods. The mechanism for the discrimination of dopamine from ascorbic acid at MC/GCE is discussed. The linear calibration range for DA and AA were 5 x 10(-7) mol l(-1) to 1 x 10(-4) mol l(-1) (r = 0.997), and 5 x 10(-6) mol l(-1) to 1 x 10(-3) mol l(-1) (r = 0.996), respectively. The MC/GCE showed good sensitivity, selectivity and stability.  相似文献   

2.
过循环伏安制备了聚对羟基苯甲酸修饰的玻碳电极。考察了该电极对抗坏血酸的电催化性能。结果显示,聚对羟基苯甲酸修饰玻碳电极对抗坏血酸有很好的电催化作用。在修饰后的电极上产生的峰电流比修饰前的电极产生的峰电流大4倍,氧化峰电位负移189 mV。其氧化峰电流与抗坏血酸浓度在2.6×10-5~3.68 ×10-4mol/L范围内呈线性关系,相关性系数为0.9984,检测限为5×10-6 mol/L(S /N = 3)。在AA与UA共存的体系中,能排除多巴胺对抗坏血酸测定的干扰。  相似文献   

3.
beta-Alanine was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) proved the immobilization of beta-alanine monolayer on GCE. The electrode shows strong electrocatalytic functions to dopamine (DA) and ascorbic acid (AA), reducing the overpotentials by 0.20 V and 0.23 V, respectively. Due to its different catalytic effects toward DA and AA, the modified electrode resolved the overlapping voltammetric responses of DA and AA into two well-defined voltammetric peaks by CV or differential pulse voltammetry (DPV), which can be used for the simultaneous determination of these species in a mixture. The catalytic peak current obtained from DPV was linearly related to DA and AA concentrations in the ranges of 4.0 x 10(-6)-5.0 x 10(-4) mol/L and 2.0 x 10(-5)-6.0 x 10(-3) mol/L with correlation coefficients of 0.997 and 0.995, respectively. The detection limits (3 sigma) for DA and AA were 2.4 x 10(-6) mol/L and 1.2 x 10(-5) mol/L, respectively. The electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

4.
用滴涂法和电化学聚合法制备了聚中性红/纳米二氧化硅修饰电极(PNR/nano-SiO2/GCE),并用循环伏安法和交流阻抗法研究了修饰电极表面的电化学行为。实验表明,该修饰电极对抗坏血酸(AA)表现出良好的电催化氧化性能,探讨了复合修饰电极协同增效作用的机理。用线性扫描伏安法研究了AA浓度与峰电流之间线性关系,在pH2.0的磷酸盐缓冲溶液中,AA氧化峰电流在1.8×10-6~5.0×10-3mol/L浓度范围内呈良好的线性关系,检出限为5.4×10-7mol/L(S/N=3)。该修饰电极制备简单,可用于药品及果蔬食品中抗坏血酸的直接测定。  相似文献   

5.
Glycine was covalently grafted on to a glassy carbon electrode (GCE) by amine cation radical formation in electrooxidation of the amino-containing compound. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry proved the immobilization of glycine on the GCE. The modified electrode reduced the overpotentials of dopamine (DA) and ascorbic acid (AA) by approximately 0.15 V and 0.23 V, respectively, and resolved the overlapping voltammetric response of DA and AA into two well-defined voltammetric peaks in cyclic voltammetry (CV) or differential pulse voltammetry (DPV), unlike the unmodified GCE; this can be used for the simultaneous determination of these species in a mixture. The differential pulse peak current was linearly dependent on DA and AA concentration in the range 5 x 10(-6)-8 x 10(-4) mol L(-1) and 6 x 10(-5)-4 x 10(-3) mol L(-1), with correlation coefficients of 0.996 and 0.994, respectively. The detection limits (3delta) for DA and AA were 1.8 x 10(-6) mol L(-1) and 2.1 x 10(-5) mol L(-1), respectively. The modified electrode is very sensitive, selective and stable, and has been applied to the determination of DA and AA simultaneously in samples with satisfactory results.  相似文献   

6.
L Zheng  S Wu  X Lin  L Nie  L Rui 《The Analyst》2001,126(6):736-738
An over-oxidized poly(N-acetylaniline) (PNAANI)/GCE was used to determine dopamine (DA) in a large excess of ascorbic acid (AA) by differential pulse voltammetry. A linear relation between Ip and DA concentration was found over the range 5.0 x 10(-7) to 2.0 x 10(-5) M. The detection limit was 1.68 x 10(-8) M for S/N = 3 and 400 microM AA did not interfere with the DA determination. The high sensitivity was due to accumulation and selectivity was due to charge discrimination. The mechanism of selective determination of DA at over-oxidized PNAANI/GCE was also proposed.  相似文献   

7.
A synthetic cationic surfactant, 5, 5-ditetradecyl-2-(2-trimethyl-ammonioethyl)-1, 3-dioxane bromide (DTDB), was used toconstruct a supported bilayer lipid membrane (s-BLM) coatedon an underlying glassy carbon electrode (GCE). Electrochem-ical impedance spectroscopy (EIS), small-angle X-ray diffrac-tion (SAXD) and cyclic voltammetry were used to characterizethe s-BLM. Both EIS and SAXD data indicated that the syn-thetic lipid exists as a well-oriented bilayer in the membrane.  相似文献   

8.
Wang K  Dai L  Liu Q  Li H  Ju C  Wu J  Li H 《The Analyst》2011,136(20):4344-4349
We report a novel and facile electrodeposition method to fabricate a nano-structure film of the unsubstituted metal phthalocyanine on a glassy carbon electrode (GCE). In this electrodeposition system, unsubstituted iron(II) phthalocyanine (u-FePc) was chosen as the model complex of the unsubstituted metalphthalocyanine, and the ionic liquid 1-octyl-3-methylimidazolium trifluoroacetate was employed as the solvent and electrolyte, thus avoiding the use of additional costly supporting electrolyte. Excellent electrocatalytic performance of the u-FePc nano-structure film was first evaluated by electrocatalytic oxidation of ascorbic acid (AA). Compared with the bare GCE, the oxidation peak potential of AA at u-FePc/GCE shifted negatively about 264 mV, and the oxidation peak current increased about 1.8 times. Furthermore, the as-prepared film was employed for the investigation of luminol electrochemiluminescence (ECL) behavior in neutral solution, which showed excellent performance including under selected experimental conditions, the ECL intensity showing an acceptable linear relationship for luminol concentrations between 5 × 10(-8) and 5 × 10(-6) M, and a linear response to H(2)O(2) over a wide concentration range, from 1.0 × 10(-8) to 1.0 × 10(-5) M in 3.0 μM luminol solution.  相似文献   

9.
Wang J  Chen G  Huang J 《The Analyst》2005,130(1):71-75
A glassy carbon electrode (GCE) modified with nickel(II) tetrasulfophthalocyanine (NiTSPc) and Nafion was used for the investigation of the catalytic oxidation of luminol. The modified electrode was found to much more effectively improve the emission of electrochemiluminescence(ECL) of luminol in a solution containing hydrogen peroxide. The enhanced ECL signal corresponded to the catalytic oxidation of both luminol and H(2)O(2) by NiTSPc. Attached Ni(II) on GCE was oxidised to Ni(III) and then used as the catalyst for the chemiluminescence of luminol. The enhanced stability of the ECL signal with Nafion would mainly result from the prevention of the dissolution of NiTSPc and the adsorption of the oxidation product of luminol on the electrode surface. The proposed method enables a detection limit for luminal of 6.0 x 10(-8) mol L(-1) to be achieved in the presence of H(2)O(2) in the neutral solution. The enhanced ECL intensity had a linear relationship with the concentration of luminol in the range of 1.0 x 10(-7)-8.0 x 10(-6) mol L(-1).  相似文献   

10.
利用电聚合方法在石墨烯修饰的玻碳电极表面制备了聚亚甲基蓝/石墨烯修饰电极(PMB/GH/GCE)。采用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了多巴胺(DA)和抗坏血酸(AA)在该修饰电极上的电化学行为。在pH 6.9的磷酸盐缓冲溶液中,DA和AA分别在0.208 V和-0.108 V处产生灵敏的氧化峰,与其在聚亚甲基蓝和石墨烯单层修饰电极上的电化学行为相比,两者的峰电流明显增加,峰电位差达316 mV。研究表明,电聚合方法使亚甲基蓝牢固地非共价修饰到石墨烯上,并产生协同增效作用,较好地提高了电极的灵敏度和分子识别性能,有利于在大量AA存在下实现对DA的选择性测定。在1.00×10-3mol/L AA的存在下,DA的差分脉冲伏安法峰电流与其浓度在1.00×10-7~5.00×10-3mol/L范围内呈良好的线性关系,检出限达1.00×10-8mol/L。将该方法用于盐酸多巴胺注射液的测定,结果满意。  相似文献   

11.
Jin G  Huang F  Li W  Yu S  Zhang S  Kong J 《Talanta》2008,74(4):815-820
A poly-ABSA/SWNTs composite-modified electrode was fabricated by electropolymerizing aminobenzene sulphonic acid (ABSA) on the surface of glassy carbon electrode (GCE) modified with single-wall carbon nanotubes (SWNTs). SWNTs provide a 3D porous and conductive network for the polymer immobilization. The nanocomposite film was characterized by scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS). The results indicated that this composite-modified electrode had strong electrocatalytic activity toward the oxidation of trifluoperazine (TFP). TFP could effectively accumulate on the modified electrode and generate a sensitive anodic peak at 0.72V (versus SCE) in pH 6.1 phosphate buffer solution. Under the selected conditions, the anodic peak current of TFP was linear with its concentration within the range from 1.0x10(-7) to 1.0x10(-5)molL(-1) and 1.0x10(-5) to 1.0x10(-4)molL(-1), and the detection limit was 1.0x10(-9)molL(-1) (S/N=3). This method was successfully applied to the detection of trifluoperazine in drug samples and the recovery was satisfactory. In comparison with the SWNTs/GCE or poly-ABSA/GCE prepared in the similar way, this composite-modified electrode exhibited better catalytic activity.  相似文献   

12.
《Analytical letters》2012,45(1):22-33
A three-dimensional L-cysteine (L-cys) monolayer assembled on gold nanoparticles (GNP) providing simultaneous detection of uric acid (UA) and ascorbic acid (AA) was studied in this work. The cyclic voltammetry demonstrated that, at a bare glassy carbon electrode (GCE) or planar gold electrode, the mixture of UA and AA showed one overlapped oxidation peak; whereas when the electrode was modified with GNP, the oxidation peaks for UA and AA were separated. While a GNP modified electrode was further modified with L-cys monolayer (L-cys/GNP/GCE), namely, three-dimensional L-cys monolayer, a better separation for UA and AA response was obtained. Interestingly, the L-cys monolayer-modified planar gold electrode presented a block effect on the oxidation of AA, which was facilitated by the three-dimensional L-cys monolayer attributed to its distinct structure. The pH of solution presented a noticeable effect on the separation of UA and AA at GNP modified electrodes with or without L-cys monolayer. Wide concentration ranges from 2 × 10?6?1 × 10?3 M to UA and 2 × 10?6?8 × 10?4 M to AA could be obtained at L-cys/GNP/GCE.  相似文献   

13.
Seed-mediated growth of gold nanoparticles on glassy carbon (GC) surfaces was developed. The field emission scanning electron microscopy (FE-SEM) and electrochemical characterization confirmed the effective attachment of gold nanoparticles on GC surface with such a wet-chemical method. The as-prepared gold nanoparticles attached glassy carbon electrode (Au/GCE) presented excellent catalytic ability toward the oxidation of nitrite. Compared with bare GCE and planar gold electrode, the Au/GCE obviously decreased the overpotential of nitrite oxidation and improved the peak current. The catalytic current was found to be linearly proportional to the nitrite concentration in the range of 1 x 10(-5) - 5 x 10(-3) M, with a detection limit of 2.4 x 10(-6) M. The Au/GCE was successfully applied to the electrochemical determination of nitrite in a real wastewater sample, showing excellent stability and anti-interference ability.  相似文献   

14.
Diffusion coefficient measurements in microfluidic devices   总被引:2,自引:0,他引:2  
A glassy carbon electrode (GCE) modified with Pd/IrO(2) provides excellent electrocatalytic oxidation of hydrogen peroxide. Glucose oxidase (GOD) and xanthine oxidase (XOD) were co-immobilized on the modified electrode with a thin film Nafion coated on the enzyme layer to form a glucose (Glu)/hypoxanthine (Hx) sensor, without interference from electroactive species such as ascorbic acid (AA) and uric acid (UA). Its response was evaluated with respect to the enzyme amount on the electrode, pH and temperature of the electrolyte. The prepared bienzymic biosensor, used as the detector of HPLC gave a detection limit of 1.0x10(-6) mol l(-1) Glu and 2.0x10(-7) mol l(-1) Hx (Hx) with a linear concentration range of 5.0x10(-6)-2.5x10(-3) mol l(-1) and 1.0x10(-6)-5.0x10(-4) mol l(-1), respectively. Coupled with microdialysis, it was used to monitor the concentrations of Glu and Hx in rat brain.  相似文献   

15.
A novel palladium-polyphenosafranine nano-composite (PPS-Pd) was synthesized by electrochemical co-deposition at a glassy carbon electrode (GCE) for fabrication of a nitrite sensor, PPS-Pd/GCE. This PPS-Pd film was characterized by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microanalysis (SEM). It was found that the PPS-Pd nano-composite consisted of Pd nanoparticles smaller than 10 nm in diameter which stick together due to the polymer, forming a Pd-embedded PPS layer structure. The sensing ability was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and differential pulse amperometry (DPA). The PPS-Pd/GCE had excellent catalytic activity toward the oxidation of nitrite: high current sensitivity of 0.365 A/M cm(-2), good reproducibility, good stability and fast response. In neutral solutions, a linear concentration range of 1.0 x 10(-6) to 1.1 x 10(-3) M (R(2) = 0.999) with the detection limit (s/n = 3) of 3 x 10(-7) M nitrite was obtained for DPV determination.  相似文献   

16.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

17.
Two kinds of TiO(2) nanobelts were prepared from commercial P-25 powders via an alkaline hydrothermal method with and without an acid etching process. The uncauterized nanobelts (TNs) exhibited a smooth surface, and mixed phases of anatase and TiO(2) (B), whereas the cauterized ones (CTNs) displayed a rough surface and a pure anatase structure. TNs and CTNs were then deposited onto a glassy carbon electrode (GCE) surface with a conductive adhesive (CA), and the resulting chemically modified electrodes exhibited electrocatalytic activities in the oxidation of nucleobases in a 0.1 M phosphate buffer solution (PBS) at pH 7.4. For guanine and adenine, well-defined oxidation peaks were observed in voltammetric measurements at about +0.62 and +0.89 V, respectively, at a potential sweep rate of 100 mV s(-1), whereas for cytosine, uracil and thymine, the voltammetric features were not obvious. The average surface coverages (Γ) of guanine and adenine on the CTNs/CA/GCE electrode were estimated to be 4.75 × 10(-10) and 7.44 × 10(-10) mol cm(-2), respectively, which were about twice those at the TNs/CA/GCE electrode. The enhanced activity of the CTN-based electrode towards purine nucleobase oxidation was ascribed to the large specific surface area and anatase structures with enhanced (001) facets of the CTN that facilitated adsorption of the analytes onto the electrode surface and charge transport through the electrode surface layer.  相似文献   

18.
Lin XH  Wan HY  Zhang YF  Chen JH 《Talanta》2008,74(4):944-950
The interaction of Aloe-emodin (AE) with salmon sperm DNA in 0.1M Tris-HCl buffer (pH 4.4) and at the DNA-modified glassy carbon electrode (GCE) was systemically studied with voltammetry and ultraviolet-visible (UV-vis) spectroscopy. AE had excellent electrochemical activity on the GCE with a couple of redox peaks. We propose that AE can intercalate into DNA strands forming a nonelectroactive complex, which results in the decrease of the reduction peak current of AE. The Langmuir adsorption constants of AE at ss- and dsDNA/GCE were (2.1+/-0.4)x10(5) and (2.7+/-0.2)x10(5)M(-1), respectively. The difference between AE at ss- and dsDNA has been used for the preparation of a sequence-specific DNA electrochemical biosensor for detection of PML-RARalpha fusion gene in acute promyelocytic leukemia (APL) with a detection limit of 6.7x10(-8)M and a linear range from 1.5x10(-8) to 1.5x10(-7)M. The selectivity of ssDNA-modified electrode was also described.  相似文献   

19.
历洋  李锦州  庞筱喆 《应用化学》2013,30(5):578-583
制备了一种新型电化学传感器--聚2,2-联吡啶(Pbpy)/1-苯基-3-甲基-4-(α-呋喃甲酰基)-5-吡唑啉酮(HPM-α-FP)/玻碳(GC)复合膜修饰电极。 运用循环伏安法和脉冲伏安法研究了药物分子黄嘌呤(XN)的电化学行为及反应机理。 与裸GCE和Pbpy/GCE电极相比,复合修饰电极Pbpy/HPM-α-FP/GCE测定XN的氧化峰电流和检测灵敏度均有显著提高,表明聚2,2-联吡啶与酰基吡唑啉酮产生了协同增效作用。 当pH=8,扫速为100 mV/s的条件下,氧化峰电流与黄嘌呤浓度在6×10-7~1×10-5 mol/L和1×10-5~1×10-4 mol/L之间均呈现良好的线性关系,检出限为1×10-8 mol/L。 该修饰电极可用于共存尿酸(UA)、抗坏血酸(AA)体系及实际样品的黄嘌呤含量测定。  相似文献   

20.
M Liu  L Wang  J Deng  Q Chen  Y Li  Y Zhang  H Li  S Yao 《The Analyst》2012,137(19):4577-4583
A new ferrocene derivative (1-[(4-amino) phenylethynyl]ferrocene, Fc-NH(2)) was synthesized for the first time. The ferrocene derivative molecule contained the phenylethynyl skeleton, ferrocene and amino groups with excellent electrochemical properties. The graphene/Fc-NH(2) nanocomposite was prepared by mixing graphene solution and Fc-NH(2) solution in one pot and the nanocomposite was utilized to construct a Nafion/graphene/Fc-NH(2) modified glassy carbon electrode (GCE). The ferrocene derivative immobilized on the graphene can enhance the charge-transport ability of the nanocomposite, stabilize the graphene and prevent the leakage of ferrocene. The detection signal of dopamine (DA) was significantly amplified on the Nafion/graphene/Fc-NH(2)/GCE. It was experimentally demonstrated that the signal enhancement results from the synergy amplification effect of graphene and the Fc-NH(2). The oxidation peak currents of DA were linearly related to the concentrations in the range of 5 × 10(-8) to 2 × 10(-4) M with the detection limit of 20 nM in the absence of uric acid (UA) and ascorbic acid (AA). In the presence of 10(-3) M AA and 10(-4) M UA, the linear response range was 1 × 10(-7) to 4 × 10(-4) M, and the detection limit was 50 nM at S/N = 3. Using the proposed Nafion/Fc-NH(2)/graphene/GCE, DA was successfully determined in real samples with the standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号