首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical–electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro-structured 8?×?8 aperture partition arrays with average aperture diameters of 301?±?5 μm. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24?×?24 and hexagonal 24?×?27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays.
Figure
Fluorescent image of a large 24?×?24 rectangular bilayer array  相似文献   

2.
The thickness and refractive index of 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayers Langmuir--Blodgett (LB) deposited on mica were measured in dry air and bulk water using multiple-beam interferometry (MBI). Measurements of thickness using atomic force microscopy (AFM) of identical monolayers, and X-ray reflectivity (XRR) of the monolayers on quartz were taken for comparison. The measurement of the properties of solid-supported monolayers in dry air allows lipid optical properties to be determined free from solvent effects. The thickness and refractive index measured by MBI were 25.5?±?0.6 Å and 1.485?±?0.007 for DPPE monolayers, and 23.9?±?0.5 Å and 1.478?±?0.006 for DPPC monolayers in dry air. These thicknesses are consistent with the other techniques used in this work as well as other measurements in the literature. The refractive indices of solid-supported lipid monolayers have not been previously measured. The values are higher than previous measurements on black lipid films done by reflectometry, which is attributed to increased lipid packing density and the absence of hydrocarbon solvents. Applying water to the monolayers had no measurable effect on their properties, indicating that any change in hydration was below detection.
Figure
?  相似文献   

3.
The molecular composition of mycobacteria and Gram-negative bacteria cell walls is structurally different. In this work, Raman microspectroscopy was applied to discriminate mycobacteria and Gram-negative bacteria by assessing specific characteristic spectral features. Analysis of Raman spectra indicated that mycobacteria and Gram-negative bacteria exhibit different spectral patterns under our experimental conditions due to their different biochemical components. Fourier transform infrared (FTIR) spectroscopy, as a supplementary vibrational spectroscopy, was also applied to analyze the biochemical composition of the representative bacterial strains. As for co-cultured bacterial mixtures, the distribution of individual cell types was obtained by quantitative analysis of Raman and FTIR spectral images and the spectral contribution from each cell type was distinguished by direct classical least squares analysis. Coupled atomic force microscopy (AFM) and Raman microspectroscopy realized simultaneous measurements of topography and spectral images for the same sampled surface. This work demonstrated the feasibility of utilizing a combined Raman microspectroscopy, FTIR, and AFM techniques to effectively characterize spectroscopic fingerprints from bacterial Gram types and mixtures.
Figure
AFM deflection images, Raman spectra, SEM images, and FTIR of Mycobacterium sp. KMS  相似文献   

4.
Glutaraldehyde (GA) is widely used as a crosslinker to immobilize enzymes, for examples in biosensors, but often causes partial denaturation. We find that the proper use of poly(ethylene glycol) (PEG) during the crosslinking process can fully preserve the native state and activity of horseradish peroxidase (HRP). An amperometric biosensor was developed based on these findings for the direct determination of hydrogen peroxide. UV-Vis and FTIR spectroscopy reveal that the HRP entrapped in a polypyrrole matrix retains its native structure. The addition of PEG increases the sensitivity and stability of the biosensor and prevents many of effects caused by intra-crosslinking via GA. The biosensor was operated at a potential of ?350?mV (vs Ag/AgCl) without any mediator and gave a linear response to H2O2 in the 5 to 190???M concentration range. The apparent Michaelis-Menten constant is 3.37?mM, and maximal current is as high as 3.43???A. The surface of the biosensor was characterized by atomic force microscopy operated in the tapping mode.
Figure
Solid phase and AFM images of native and denaturized peroxidase  相似文献   

5.
We describe a system that provides a rapid and simple way of forming suspended lipid bilayers within a microfluidic platform from an aqueous droplet. Bilayer lipid membranes are created in a polymeric device by contacting monolayers formed at a two-phase liquid–liquid interface. Microdroplets, containing membrane proteins, are injected onto an electrode positioned above an aperture machined through a conical cavity that is filled with a lipid–alkane solution. The formation of the BLM depends solely on the device geometry and leads to spontaneous formation of lipid bilayers simply by dispensing droplets of buffer. When an aqueous droplet containing transmembrane proteins or proteoliposomes is injected, straightforward electrophysiology measurements are possible. This method is suitable for incorporation into lab-on-a-chip devices and allows for buffer exchange and electrical measurements.
Figure
Bilayer lipid membranes are formed in a polymeric device by injecting water droplets, containing membrane proteins, directly onto an electrode positioned above an aperture machined into a conical cavity, which is initially filled with a lipid-alkane solution. The water droplet slides down the electrode to the aperture at the bottom of the conical reservoir. The geometry of this system enables the spontaneous formation of a BLM. Ion channel activity is recorded between an electrode in the bottom channel and the electrode in the droplet. The technique is scalable and could be configured as a high throughput multi-site biosensing or drug screening platform.  相似文献   

6.
Atomic force microscopy is unmatched in terms of high-resolution imaging under ambient conditions. Over the years, substantial progress has been made using this technique to improve our understanding of biological systems on the nanometer scale, such as visualization of single biomolecules. For monitoring also the interaction between biomolecules, in situ high-speed imaging is making enormous progress. Here, we describe an alternative ex situ imaging method where identical molecules are recorded before and after reaction with a binding partner. Relocation of the identical molecules on the mica surface was thereby achieved by using a nanoscale scratch as marker. The method was successfully applied to study the complex formation between von Willebrand factor (VWF) and factor VIII (FVIII), two essential haemostatic components of human blood. FVIII binding was discernible by an appearance of globular domains appended to the N-terminal large globular domains of VWF. The specificity of the approach could be demonstrated by incubating VWF with FVIII in the presence of a high salt buffer which inhibits the interaction between these two proteins. The results obtained indicate that proteins can maintain their reactivity for subsequent interactions with other molecules when gently immobilized on a solid substrate and subjected to intermittent drying steps. The technique described opens up a new analytical perspective for studying protein-protein interactions as it circumvents some of the obstacles encountered by in situ imaging and other ex situ techniques.
Figure
Complex formation between VWF and FVIII directly monitored on a mica surface by AFM  相似文献   

7.
The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.
Figure
A Nanodisc-solubilized membrane protein library is formed by extracting a population of membrane proteins into detergent and then incorporating these proteins into a heterogeneous Nanodisc library, which models the membrane proteome  相似文献   

8.
We report on an investigation of the optical properties of gold nanoparticles assembled as thin films of different thickness. The nanoparticles were linked to the surface of a gold chip by dithiol reagents and studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. There is good correlation between the experimental findings and theoretical simulation, and the respective data reveal the presence of ordered nanostructures in the assemblies. The shift in the SPR angle is linearly dependent on the particle size and the ratio of the different particles. SPR spectroscopy also reveals important information in terms of the optical constants of such films. This shall be further applied to in-situ quality control in the fabrication of optoelectronic, solar cell and semiconductor devices.
Figure
SPR angle shifts according to the immobilization of gold nanoparticles with different size on BDMT SAM  相似文献   

9.
A cysteamine (CysAm) nanostructure was generated to act as an intermediate layer between gold electrode and carbon nanotubes. A bare gold electrode was placed in a solution of CysAm to create a self-assembled monolayer on its surface. The modified electrode was then incubated with a solution of multi-walled carbon nanotubes. Cyclic voltammetry and atomic force microscopy were used to characterize the modified electrode. The results indicated that the number of functionalized MWCNTs on the surface of the electrodes increased by enhancing incubation time.
Figure
The aim of this paper is to investigate the variations of incubation time of bare gold electrode inside cysteamine solution for immobilization of MWCNTs on cysteamine modified electrode. It is found that the number of functionalized MWCNTs on the surface of cysteamine modified electrode increased by enhancing incubation time bare gold electrode inside cysteamine solution.  相似文献   

10.
Molecular orientation‐dependent electron transport across supported 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L ‐tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization‐dependent real‐time Fourier transform infrared reflection absorption spectroscopy (FT‐IRRAS) analysis of these SLBs reveals electrostatic, hydrogen‐bonding, and cation–π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO‐anchored SLBs in the presence of an internal Fe(CN)64?/3? redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron‐transfer rate constants for symmetric and asymmetric bilayers (ks=2.0×10?2 and 2.8×10?2 s?1) across the two‐dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (ks=3.2×10?3 and 3.9×10?3 s?1). In addition, they are molecular tilt‐dependent, as it is the case with the standard apparent rate constants ${k_{{\rm{app}}}^0 }$ , estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of ks and ${k_{{\rm{app}}}^0 }$ imply that electrochemical reactions across the ITO–SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants ${\left( {k_{{\rm{th}}}^0 } \right)}$ accrued upon electron tunneling comply with the potential‐independent electron‐tunneling coefficient β=0.15 Å?1. Insulator–semiconductor transitions moving from a liquid‐expanded to a condensed 2D‐phase state of the SLBs are noted, adding a new dimension to their transport behavior. These results highlight the role of tryptophan in expediting electron transfer across lipid bilayer membranes in a cellular environment and can provide potential clues towards patterned lipid nanocomposites and devices.  相似文献   

11.
Several severe neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and prion-associated transmissible spongiform encephalopathies, have been linked to dysregulation of specific proteins capable of self-assembly into deleterious fibrillar aggregates termed amyloids. A wide range of analytical techniques has been used to clarify the mechanisms of these protein-misfolding processes, in the hope of developing effective therapeutic treatment. Most of these studies have relied heavily on conventional methods of protein characterization, notably circular dichroism spectroscopy, thioflavin T fluorescence, transmission electron microscopy, and atomic force microscopy, which are particularly suitable for monitoring later-stage aggregate formation. Although electrochemical methods of protein detection have existed for some time, they have only recently gained prominence as a powerful tool for studying the early stages of protein aggregation during which the more toxic soluble amyloid species form. Electrochemical detection methods include direct detection of intrinsic redox-active amino acid residues, protein-catalyzed hydrogen evolution, use of extrinsic β-sheet binding mediators, and impedance spectroscopy. In this review, we evaluate the use of electrochemistry for study of protein aggregation related to neurodegenerative disorders.
Figure
?  相似文献   

12.
The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0?ng?mL-1. If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2?ng?mL-1. The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results.
Figure
The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkable enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. A sensitive RRS method for determination of insulin and DNA were established.  相似文献   

13.
The surface chemistry of gold nanowires (AuNWs) has been systematically assessed in terms of contamination and cleaning processes. The nanomaterial’s surface quality was correlated to its performance in the matrix-free laser desorption ionization mass spectrometry (LDI-MS) analysis of low molecular weight analytes. Arrays of AuNWs were deposited on glass slides by means of the lithographically patterned nanowire electrodeposition technique. AuNWs were then characterized in terms of surface chemical composition and morphology using X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy. AuNWs were subjected to a series of well-known cleaning procedures with the aim of producing the best performing surfaces for the LDI-MS detection of leucine enkephalin, chosen as a model analyte with a molar mass below 1,000 g/mol. Prolonged cyclic voltammetry in 2 M sulfuric acid and, most of all, oxygen plasma cleaning for 5 min provided the best results in terms of simpler (interference-free) and more intense mass spectrometry spectra of the reference compound. The analyte always ionized as the sodiated adduct, and leucine enkephalin limits of detection of 0.5 and 2.5 pmol were estimated for the positive and negative analysis modes, respectively. This study points out the tight correlation existing between the chemical status of the nanostructure surface and the AuNW-assisted LDI-MS performance in terms of reproducibility of spectra, intensity of analyte ions and reduction of interferences.
Figure
SEM (a-d) and AFM (e-f) pictures and LDI-MS spectra of leu-enk analyte (g-h) obtained with untreated (left side) and oxygen plasmatreated (right side) gold nanowire arrays supported on glass slide  相似文献   

14.
We have developed an aptasensor for adenosine triphosphate (ATP) based on an electrode-supported lipid bilayer membrane. The assay is based on a conformational change that is induced after binding the target which modulates the electron transfer rate in the conductive path. The method is highly sensitive, stable, and repeatable. The detection limit for ATP is 50 nM, and the dynamic range extends to 3.2 μM, which covers the concentration range of ATP in cell lysates (from 0.1 to 1 μM). The method also holds promise in that it may be transferred to submicro- or nano-scale electrodes so to enable intracellular monitoring of ATP.
Figure
An aptasensor for adenosine triphosphate based on an electrode-supported lipid bilayer membrane in principle of target-binding induced conformational change to modulate the electron transfer rate in the conductive path.  相似文献   

15.
We have studied the effect of treatment of multiwalled carbon nanotubes (MWCNTs) for use in DNA-based biosensors with oxygen plasma. Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film in a lab-made plasma chamber. The resulting electrodes exhibited a dramatic change in the morphology of their surface, the chemical composition, and the electrochemical properties in terms of peak current and peak potential separation. The electrodes also showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes. Plasma treatment was optimized and electrodes were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential pulse voltammetry.
Figure
Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film. The electrodes showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes  相似文献   

16.
The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6–8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.
Figure
Photoemitted spectra and in-depth concentration profiles (blue: oxygen; orange: carbon), obtained by means of XPS peak shape analysis, of a PET plasma activated surface. The shown topography corresponds to an atomic force microscopy image of the treated surface.  相似文献   

17.
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6Cl3 on the smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites.
Figure
It is shown that the gold surface is catalytically deactivated and smoothened upon removal of the Prussian blue (PB)–gold nanocomposite formed on the gold surface. Atomic force microscopy proves surface smoothening after PB removal. The voltammetric responses of Ru(NH3)6.Cl3 on smoothened surface remain unaffected, but the reactions that involve multistep and inner-sphere electron transfer are affected on the smoothened surface as exemplified by hydroquinone, ferrous oxalate redox reactions, and oxygen reduction. These effects are attributed to catalytic deactivation as a consequence of removal of the active sites. Graphical abstract shows the Au surface smoothening as a consequence of Prussian blue-gold nanocomposite (Au-PB) formation and removal  相似文献   

18.
Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.
Figure
?  相似文献   

19.
The core-shell nanoparticles consisting of poly(methyl methacrylate) (PMMA) cores surrounded by various acid-modified chitosan shells were synthesized using a surfactant-free emulsion copolymerization, induced by a tert-butylhydroperoxide (TBHP) solution. Methyl methacrylate (MMA) was grafted onto four acid-modified chitosans (hydrochloric, lactic, aspartic, and glutamic acids) with MMA conversions up to 64%. The prepared nanoparticles had diameter ranging from 100 to 300 nm characterized by atomic force microscopy and displayed highly positive surface charges up to +77 mV. Transmission electron microscopic images clearly revealed well-defined core-shell morphology of the nanoparticles where PMMA cores were coated with acid-modified chitosan shells. The effect of acid-modified chitosans on particle size, intensity of surface charge, morphology, and thermal stability were determined systematically. The plasmid DNA/nanoparticles complexes were investigated with ζ-potential measurement. The results suggested that these nanoparticles can effectively complex with plasmid DNAs via electrostatic interaction and could be used as gene carriers.
Figure
The preparation of PMMA/acid-modified chitosan nanoparticles by free radical polymerization  相似文献   

20.
We report on a simple, fast and convenient method to engineer lipid vesicles loaded with quantum dots (QDs) by incorporating QDs into a vesicle-type of lipid bilayer using a phase transfer reagent. Hydrophilic CdTe QDs and near-infrared (NIR) QDs of type CdHgTe were incorporated into liposomes by transferring the QDs from an aqueous solution into chloroform by addition of a surfactant. The QD-loaded liposomes display bright fluorescence, and the incorporation of the QDs into the lipid bilayer leads to enhanced storage stability and reduced sensitivity to UV irradiation. The liposomes containing the QD were applied to label living cells and to image mouse tissue in-vivo using a confocal laser scanning microscope, while NIR images of mouse tissue were acquired with an NIR fluorescence imaging system. We also report on the fluorescence resonance energy transfer (FRET) that occurs between the CdTe QDs (the donor) and the CdHgTe QDs (the acceptor), both contained in liposomes. Based on these data, this NIR FRET system shows promise as a tool that may be used to study the release of drug-loaded liposomes and their in vivo distribution.
Figure
The lipid-QDs vesicles engineered by incorporation of hydrophilic QDs via efficient phase transfer reagent were used for cell labeling and NIR imaging in vivo. And a novel fluorescence resonance energy transfer system between different QDs in the lipid bilayer was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号