首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolic profile of BAL4815, an antifungal azole drug, was determined using in vitro rat hepatocyte incubations and subsequent analysis by capillary LC-qTof-MS and MS/MS including accurate mass determination. For the detection of the metabolites, a mixture of the drug and its deuterium-labelled analogue was used for incubations. Metabolic stability of BAL4815 was high in cultured rat hepatocytes. However, several low-abundant metabolites were detected by the use of capillary LC-qTof-MS and manual investigation of the data. The peak intensity of the most abundant metabolite was close to the limit of detection. Except for an apparent oxidation product, the masses of the other detected metabolites could not be assigned to a single and frequently occurring biotransformation. Accurate mass determination and possible elemental compositions suggested that metabolism occurred through a combination of glutathionylation and defluorination. This was verified using accurate mass MS/MS. The use of accurate mass measurements and the derived suggestions for the elemental compositions were essential to elucidate this atypical metabolic pathway. A mass accuracy better than 8 ppm could be achieved for most assigned MS and MS/MS signals with intensities less than 6 cps in the spectra.  相似文献   

2.
Graveoline is a biologically active ingredient extracted from Ruta graveolens. Current work aimed at investigating in vitro metabolism of graveoline using rat or human liver microsomes and hepatocytes. Graveoline (20 μM) was incubated with nicotinamide adenine dinucleotide phosphate–supplemented rat and human liver microsomes as well as hepatocytes. LC coupled to a photo diode array detector and quadrupole/time-of-flight tandem mass spectrometry was used to detect and identify the metabolites. The structures of the metabolites were identified by accurate mass, elemental composition, and indicative fragment ions. A total of 12 metabolites, comprising 6 phase I and 6 phase II metabolites, were obtained. The metabolic pathways included demethylenation, demethylation, hydroxylation, glucuronidation, and glutathion conjugation. The metabolite (M10) produced by opening the ring of the methylenedioxyphenyl moiety was detected as the most abundant in both liver microsomes and hepatocytes, mainly catalyzed by CYP1A2, 2C8, 2C9, 2C19, 2D6, 3A4, and 3A5. This study provides valuable information on the in vitro metabolism of graveoline, which is indispensable for further development and safety evaluation of this compound.  相似文献   

3.
In order to deepen the understanding of the metabolism of Ganstigmine, a new acetylcholinesterase inhibitor under evaluation for the treatment of Alzheimer's disease, samples obtained by incubating the drug with female rat hepatocytes were investigated by low-resolution liquid chromatography/tandem mass spectrometry (LC/MS/MS). The results confirmed the formation of most of the phase I metabolites already demonstrated, but also three new species. The combination of high-resolution quadrupole time-of-flight (Q-TOF) LC/MS and LC/MS/MS measurements, and the evaluation of the more reasonable metabolic routes, allowed the identification of the new metabolites as Geneseroline-glucuronide and oxidized and rearranged Ganstigmine. Analogous investigations were made using hepatocytes from male rat and dog, and both gender monkeys and humans, to compare the metabolic patterns. The results did not indicate substantial differences in terms of numbers and abundances of detected metabolites among the considered species, and also between male and female hepatocytes within each species.  相似文献   

4.
The active ingredients of Scutellaria baicalensis Georgi, a valuable traditional Chinese medicine, are polyhydroxyflavones, namely baicalin, scutellarin and wogonoside. However, information about the metabolic routes, metabolites and even more the effect of chemical structure on the stability of the three has been limited. In this article, the three natural compounds were incubated with human fecal flora, respectively, and highly sensitive and specific ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry implementing the MetaboLynx? software method was used for the drug metabolism study. The chromatographic separation was performed on a 1.7-μm particle size Syncronis C18 column using a gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of ten metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation and deglycosylation were the major metabolic pathways of the three flavone glycosides in vitro, and the metabolic stability was closely related to the chemical structure. This study will be helpful for fully understanding the impact of intestinal bacteria on these active components. Furthermore, this work demonstrated the potential of the ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry approach with MetaboLynx for quite rapid, simple, reliable and automated identification of metabolites of natural products.  相似文献   

5.
Xu  Jun  Qian  Dawei  Jiang  Shu  Guo  Jianming  Shang  Er-xin  Duan  Jin-ao  Yang  Jing 《Chromatographia》2013,76(15):975-983

The active ingredients of Scutellaria baicalensis Georgi, a valuable traditional Chinese medicine, are polyhydroxyflavones, namely baicalin, scutellarin and wogonoside. However, information about the metabolic routes, metabolites and even more the effect of chemical structure on the stability of the three has been limited. In this article, the three natural compounds were incubated with human fecal flora, respectively, and highly sensitive and specific ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry implementing the MetaboLynx™ software method was used for the drug metabolism study. The chromatographic separation was performed on a 1.7-μm particle size Syncronis C18 column using a gradient elution system. The components in the extract were identified and confirmed according to the mass spectrometric fragmentation mechanisms, MS/MS fragment ions and relevant literature by means of electrospray ionization mass spectrometry in negative ion mode. With this method, a total of ten metabolites were identified based on MS and MS/MS data. The results indicated that hydrogenation, methylation and deglycosylation were the major metabolic pathways of the three flavone glycosides in vitro, and the metabolic stability was closely related to the chemical structure. This study will be helpful for fully understanding the impact of intestinal bacteria on these active components. Furthermore, this work demonstrated the potential of the ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry approach with MetaboLynx for quite rapid, simple, reliable and automated identification of metabolites of natural products.

  相似文献   

6.
Flunitrazepam (FNZ) is a potent hypnotic, sedative, and amnestic drug used to treat severe insomnia. In our recent study, FNZ metabolic profiles were investigated carefully. Six authentic human urine samples were purified using solid phase extraction (SPE) without enzymatic hydrolysis, and urine extracts were then analyzed by liquid chromatography‐Q exactive‐HF hybrid quadrupole‐Orbitrap‐mass spectrometry (LC‐QE‐HF‐MS), using the full scan positive ion mode and targeted MS/MS (ddms2) technique to make accurate mass measurements. There were 25 metabolites, including 13 phase I and 12 phase II metabolites, which were detected and tentatively identified by LC‐QE‐HF‐MS. In addition, nine previously unreported phase II glucuronide conjugates and four phase I metabolites are reported here for the first time. Eight metabolic pathways, including N‐reduction and O‐reduction, N‐glucuronidation, O‐glucuronidation, mono‐hydroxylation and di‐hydroxylation, demethylation, acetylation, and combinations, were implicated in this work, and 2‐O‐reduction together with dihydroxylation were two novel metabolic pathways for FNZ that were identified tentatively. Although 7‐amino FNZ is widely considered to be the primary metabolite, a previously unreported metabolites (M12) can also serve as a potential biomarker for FNZ misuse.  相似文献   

7.
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Metabolism study was carried out on 12b-hydroxylveratroylzygadenine(VOG) that is a cevine-type alkaloid existing in Veratrum nigrum L. and a neurotoxic component. In order to better understand the potential mechanism of neurotoxicity of VOG, this study measured VOG-induced DNA damage in the cerebellum and cerebral cortex of mice after 7 days repetitive oral dose by using single-cell gel electrophoresis(Comet assay). High performance liquid chromatography-tandem mass spectrometry(LC–MS/MS) was developed and applied to separate and identify in vitro and in vivo metabolites of VOG for investing the possible relationship of metabolism and neurotoxicity. In vitro experiment was carried out using rat liver microsomes, while the in vivo study was conducted on rats. The obtained results indicated that VOG might cause DNA damage in cerebellum and cerebral cortex of mice in a dosedependent manner. Hydrolysis of ester bond and O-demethylation were proposed to be the main in vivo metabolic pathways of VOG, while the major in vitro metabolic pathways were proposed as methyl oxidation to aldehyde, dehydrogenation, hydrolysis of ester bond, hydrolysis of ester bond together with acetylation, and methoxylation. O-Demethylation reaction was likely to be associated with reactive oxygen species production, leading to the DNA damage.  相似文献   

9.
《Analytical letters》2012,45(13):1749-1763
Drug metabolism studies in vitro were carried out inexpensively and readily to serve as an adequate mechanism to characterize drug metabolites, elucidate their pathways, and make suggestions for further testing in vivo. In this work, the comparative metabolism of mequindox (MEQ) was investigated in vitro by incubation with chicken liver microsomes, hepatocytes, and intestinal microflora, followed by analysis using ultra-performance liquid chromatography coupled with electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for structure identification. There were 12 metabolites detected when MEQ was incubated with liver microsomes, 6 metabolites with the hepatocytes and 4 metabolites with intestinal microflora, respectively. The major metabolites in liver microsomes were bideoxymequindox and 2-isoethanol-N1-deoxymequindox, and that in hepatocytes were 2-isoethanol mequindox and 2-isoethanol-N1-deoxymequindox, but in intestinal incubations, N1-deoxymequindox and bideoxymequindox were the major metabolites. The results indicated that the metabolism of MEQ was active in vitro; meanwhile, revealed the main metabolic pathways of MEQ were N→O group reduction, carbonyl reduction and hydroxylation reaction. The information regarding in vitro metabolism of MEQ provided a better understanding of the role of the liver and intestinal tract in the disposition of MEQ.  相似文献   

10.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Cui  Li  Xu  Fengjuan  Jiang  Jun  Sun  E.  Zhang  Zhenhai  Cheng  Xudong  Wang  Jing  Jia  Xiaobin 《Chromatographia》2014,77(17):1223-1234

Herba Epimedii (Epimedium) is a kind of tonic herb, widely used in China. Epimedin A is a major component of Herba Epimedii with bioactivities. Analysis of the metabolic profile in vivo plays a pivotal role in understanding how traditional Chinese medicine works. And the metabolites of epimedin A might influence the effects of Herba Epimedii. Moreover, the metabolic routes of epimedin A provide an important basis for safety evaluation. Until now, little has been known about the metabolism of epimedin A. The current study was designed to characterize the metabolic pathways of epimedin A in vivo. The metabolites in rat plasma, bile, feces, and urine were identified by UPLC/Q–TOF–MS analysis. A total of 27 metabolites from epimedin A were detected or tentatively identified. The major metabolic processes were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, and conjugation with glucuronic acid and different sugars. The present study revealed the metabolic pathways of epimedin A in rat for the first time, and epimedin A could undergo extensive phase I and phase II metabolism in rat. These findings would provide an important basis for the further study and clinical application of epimedin A. In addition, the results of this work have shown the feasibility of the UPLC/Q–TOF–MS approach for rapid and reliable characterization of metabolites.

  相似文献   

12.
To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra‐high performance liquid chromatography coupled with quadrupole‐time‐of‐flight mass spectrometry (UHPLC‐Q‐TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid–liquid extraction and separated on a Shim‐pack XR‐ODS C18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone‐related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid‐related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid‐related metabolites. It is concluded the developed UHPLC‐Q‐TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD.  相似文献   

13.
In the last years, the number of new psychoactive substances, so‐called ‘legal highs’, has enormously increased. They are sold via online shops often with inaccurate and false information about the content. The aim of this work was to study the metabolism and the detectability of the drug of abuse diphenyl‐2‐pyrrolidinemethanol (D2PM) in rat urine using gas chromatography‐mass spectrometry and liquid chromatography‐high resolution‐tandem mass spectrometry. Five phase I and two phase II metabolites were identified suggesting hydroxylation at the pyrrolidine and diphenyl part as the main metabolic steps. Assuming similar kinetics, an intake of D2PM should be detectable in human urine mainly via its metabolites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
N(6) -(4-hydroxybenzyl) adenine riboside, a novel neuroprotective compound found in Gastrodia elata at trace level, is regarded as a potential drug for the treatment of neural degenerative disease. To understand the metabolism of this compound, the metabolites in rat urine and plasma of N(6) -(4-hydroxybenzyl) adenine riboside were analyzed by HPLC-ESI-MS/MS after oral administration of this compound. Beside the parent compound, six phase I metabolites and four phase II metabolites in urine were detected by scanning all possible metabolites in extracted ion chromatograms mode. By comparing their product ion spectra and retention times with those of parent compound, these metabolites were identified and proved to be mainly formed via hydrolysis or hydroxylation in phase I, N-sulfation or N-glucuronidation in phase II or their combinations. Similarly, the parent compound, one phase I metabolite and two phase II metabolites were also identified in rat plasma. Therefore, the in vivo metabolic pathways of N(6) -(4-hydroxybenzyl) adenine riboside in rat were proposed.  相似文献   

15.
Zingiberis rhizome carbonisata (ZRC) is the processed product of Zingiberis rhizome (ZR). ZR is mainly used for warming the spleen and stomach to dispel cold, whereas ZRC is commonly applied as a treatment for deficiency-cold and hemorrhagic syndrome (DCHS). Although they have long been used to serve different clinical purposes, the specific action mechanism of the drugs and molecular changes underlying ZR processing are not clear. In this study, metabolomics study was carried out to analyze the alterations in endogenous metabolites in serum and urine samples of DCHS rat models using ultra-high-performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry technique and constructed principal component analysis score plots that showed that the ZRC group was completely separated from the DCHS and ZR groups but demonstrated a highly close plotting to the normal control group. The results revealed that both ZR and ZRC intervened in the metabolic pathways of DCHS models but to varying degrees and with different influencing factors. In addition, ZRC was found to function as a treatment for the metabolic disorders of DCHS through 15 pharmacodynamic biomarkers involving a series of pathways, such as glycine, serine, and threonine metabolic pathway, as well as arachidonic acid metabolic pathways. This study showed that metabolomics method based on ultra-high-performance liquid chromatography coupled with quadrupole-Exactive mass spectrometry could preliminarily illuminate the therapeutic mechanism of ZR and ZRC on DCHS and the changes in ZR processing from the molecular-level perspective. The results also provided new insight into further research on DCHS treatment.  相似文献   

16.
Olaquindox (OLA), N-(2-hydroxyethyl)-3-methyl-2-quinoxalincarboxamide-1,4-dioxide, is an antimicrobial and growth-promoting agent for animals, which has been banned or allowed only limited use for its potential toxicity. To thoroughly understand the metabolic pathways, metabolism of OLA in rat was studied using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry with MS(E) and mass defect filtering techniques. Twenty metabolites (M1-M20) were detected in rat feces and urine, of which nine phase I metabolites (M6, M7, M11-M16) and four phase II metabolites (M17-M20) were found in vivo for the first time. The structures of metabolites were reliably characterized on the basis of accurate mass and fragment ions in MS(E) spectra. The major metabolic pathways reported previously in pigs, including reduction of N→O groups, oxidation of the alcohol and hydrolysis, were also confirmed in this study. In addition, hydroxylation of the methyl group, N-dehydroxyethylation and glucuronidation were also proved to be the important metabolic pathways, which contribute to improving our knowledge about in vivo metabolism of OLA.  相似文献   

17.
Carbonyl-containing metabolites widely exist in biological samples and have important physiological functions. Thus, accurate and sensitive quantitative analysis of carbonyl-containing metabolites is crucial to provide insight into metabolic pathways as well as disease mechanisms. Although reversed phase liquid chromatography electrospray ionization mass spectrometry (RPLC-ESI-MS) is widely used due to the powerful separation capability of RPLC and high specificity and sensitivity of MS, but it is often challenging to directly analyze carbonyl-containing metabolites using RPLC-ESI-MS due to the poor ionization efficiency of neutral carbonyl groups in ESI. Modification of carbonyl-containing metabolites by a chemical derivatization strategy can overcome the obstacle of sensitivity; however, it is insufficient to achieve accurate quantification due to instrument drift and matrix effects. The emergence of stable isotope-coded derivatization (ICD) provides a good solution to the problems encountered above. Thus, LC-MS methods that utilize ICD have been applied in metabolomics including quantitative targeted analysis and untargeted profiling analysis. In addition, ICD makes multiplex or multichannel submetabolome analysis possible, which not only reduces instrument running time but also avoids the variation of MS response. In this review, representative derivatization reagents and typical applications in absolute quantification and submetabolome profiling are discussed to highlight the superiority of the ICD strategy for detection of carbonyl-containing metabolites.  相似文献   

18.
This paper presents liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) approaches for the rapid characterization of three urinary isomeric metabolites and their two precursor metabolites of SYN-2836, a novel antifungal agent, in dogs administered multiple oral doses of the agent (30 mg kg(-1) day(-1)). A collection of correlative data regarding the SYN-2836 metabolites was obtained by LC/MS and LC/MS/MS performed under complementary conditions such as the columns (C(18) vs cyano type), the mobile phase systems (acetonitrile-water-formic acid vs acetonitrile-water-ammonium acetate) and the electrospray ionization modes (positive vs negative). Metabolite identification was accomplished based on not only the LC/MS/MS data (product ion spectra) but also the LC/MS data indicating chromatographic behaviors of the metabolites. SYN-2836 and SYN-2869, an analog of the former, showed almost the same metabolic pathways following the same multiple-dose administration of the individual agents to the dogs. Therefore, correlation analysis in product ion spectra between corresponding metabolites of SYN-2836 and SYN-2869, and also in metabolic pathways between the two agents, was strategically used to facilitate the identification of the SYN-2836 (and SYN-2869 if necessary) metabolites. For the reason that various elucidation strategies were used complementarily, the chemical structures of the metabolites were unambiguously attained and the isomeric metabolites were explicitly differentiated without the use of other analytical methods. The methodologies used in this study may be applicable to metabolite screening of several structurally related agents simultaneously, promoting lead finding and optimization of drug candidates using a metabolism-based approach.  相似文献   

19.
Total glucosides of paeony are the active constituents of Paeoniae Radix Alba. In this study, a novel strategy was proposed to find more metabolites and the differences between paeoniflorin, albiflorin and total glucosides of paeony (TGP). This strategy was characterized as follows: firstly, the animals were divided into three groups (paeoniflorin, albiflorin and TGP) to identify the source of TGP metabolites from paeoniflorin or albiflorin; secondly, a generic information‐dependent acquisition scan for the low‐level metabolites was triggered by the multiple mass defect filter and dynamic background subtraction; thirdly, the metabolites were identified with a combination of data‐processing methods including mass defect filtering, neutral loss filtering and product ion filtering; finally, a comparative study was used in the metabolism of paeoniflorin, albiflorin and TGP. Based on the strategy, 18 metabolites of TGP, 10 metabolites of paeoniflorin and 13 metabolites of albiflorin were identified respectively. The results indicated that the hydrolysis, conjugation reaction and oxidization were the major metabolic pathways, and the metabolic sites were the glycosidic linkage, the ester bond and the benzene ring. This study is first to explore the metabolism of TGP, and these findings enhance our understanding of the metabolism and the interactions of paeoniflrin and albiflorin in TGP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
TJ0711 (1‐[4‐(2‐methoxyethyl)phenoxy]‐3‐[2‐(2‐methoxyphenoxy)ethylamino]‐2‐propanol) is a novel β‐adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β‐blocker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号