首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present, contribution angle-resolved X-ray photoelectron spectroscopy (AR-XPS) was proposed as a useful tool to address the challenge of probing the near-surface region of bio-active sensor surfaces. A model bio-functionalised surface was characterised by parallel AR-XPS and commercially available Thermo Avantage-ARProcess software was used to generate non-destructive concentration depth profiles of protein-functionalised silicon oxide substrates. At each step of the functionalisation procedure, the surface composition, the overlayer thickness, the in-depth organisation and the in-plane homogeneity were evaluated. The critical discussion of the generated profiles highlighted the relevance of the information provided by PAR-XPS technique.
Figure
Schematic representation of the functionalization procedure along with the generated profiles  相似文献   

2.
The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6–8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.
Figure
Photoemitted spectra and in-depth concentration profiles (blue: oxygen; orange: carbon), obtained by means of XPS peak shape analysis, of a PET plasma activated surface. The shown topography corresponds to an atomic force microscopy image of the treated surface.  相似文献   

3.
We report on a new type of indium tin oxide (ITO) electrode for sensing ascorbic acid (AA). The ITO film was modified with gold-platinum alloy nanoparticles (Au-Pt NPs) functionalized with a self-assembled film of L-cysteine. The Au-Pt NPs were electrodeposited on the ITO film and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. A cyclic voltammetric study revealed that the electrode exhibits excellent electrocatalytic activity towards the oxidation of AA. The calibration plot for AA is linear over the concentration range from 2 to 400???M with a correlation coefficient of 0.9991. The detection limit of AA is 1???M.
Figure
Gold-platinum nanoparticles were electrodeposited on the indium tin oxide electrode surface and then self-assembled with cysteine. The resulting sensor exhibited excellent electrocatalytic activity towards the oxidation of ascorbic acid. The modified electrode is high sensitivity, easy fabrication, mediator-free and low cost.  相似文献   

4.
A nanocomposite film is described that is composed of alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles that interact through electrostatic forces. The films of varying thickness were prepared by the layer-by-layer technique, and Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The composite films were characterized by UV?Cvis spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Most nanocomposite films exhibit linear, uniform, and regular layer-by-layer growth during the process of formation. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.
Figure
A nanocomposite film was prepared by alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles, in which Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.  相似文献   

5.
We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers.
Figure
Key aspects of the biosensor: 1) mixed SAM formation, 2) immobilisation of lectin & blocking and 3) a glycoprotein recognition.  相似文献   

6.
Size-exclusion chromatography (gel filtration chromatography or gel permeation chromatography) in conjunction with online synchrotron radiation solution small-angle X-ray scattering optics, absorbance, and/or refractive index detectors was further assessed by application of biological macromolecules, such as the hollow sphere protein complex, apoferritin, and a linear polysaccharide, pullulan. The net X-ray scattering patterns of the eluted 24-mer molecule of apoferritin showed the specific character for the hollow spherical shape. The chromatographic (time-resolved) X-ray scattering data of the linear polysaccharide pullulan revealed the flexible chain structure during the chromatographic separation in an aqueous solution. These further applications demonstrated that the present measurement technique will be useful for not only the determination of the radius of gyration value of less than about 10?nm and molecular weight below several hundred thousand but also for the structural characterization of the various macromolecules during the chromatography.
Figure
Typical time-resolved scattering patterns and chromatograms in the SEC-SAXS measurement system  相似文献   

7.
Angular resolved X-ray photoelectron spectroscopy (ARXPS) has been applied to obtain the distribution of chemical elements near the surface of non-aqueous solutions containing surfactants. However, such profiles can only yield a quantitative relation between those constituents near the surface regime of sample. With the knowledge of the molar volumes of surfactant and solvent, we have obtained the molar concentration-depth profiles via the molar fraction-depth profiles that were reconstructed by ARXPS with the help of a generic algorithm. The concentration profiles show detailed distributions of the surfactant ions near the surface, which provide a direct insight into the surface picture of the surfactant solution.
The surface active cations and counter-ions have significantly different distributions near the solution surface.  相似文献   

8.
The chemical transformation of the polar chloroaluminum phthalocyanine, AlClPc, to μ-(oxo)bis(phthalocyaninato)aluminum(III), (PcAl)2O, in thin films on indium tin oxide is studied and its influence on the molecular orientation is discussed. The studies were conducted using complementary spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, density functional theory calculations were performed in order to identify specific vibrations and to monitor the product formation. The thin films of AlClPc were annealed in controlled environmental conditions to obtain (PcAl)2O. It is shown that the chemical transformation in the thin films can proceed only in the presence of water. The influence of the reaction and the annealing on the molecular orientation was studied with Raman spectroscopy and NEXAFS spectroscopy in total electron yield and partial electron yield modes. The comparison of the results obtained from these techniques allows the determination of the molecular orientation of the film as a function of the probing depth.
Illustration of the dimerization reaction of MClPc to (PcM)2O.  相似文献   

9.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

10.
In X-ray photoelectron spectroscopy (XPS) Ar+ ion sputtering is usually used for depth profiling. However, for such samples as organic coatings, this is not feasible because of degradation. Also, measurement of a depth profile on a conventionally prepared cross-section is not possible if, for example, sample thickness is below the smallest available measurement spot size of the XPS system. In our approach we used a rotary microtome to cut samples under a shallow tilting angle of 0.5° to obtain an extended cross-section suitable for XPS investigations. We also used liquid nitrogen cooling to ensure an exposed area of higher quality: topography measurements with a novel optical 3D microscope and by atomic force microscopy revealed the linearity of the inclined sections. With our cryo ultra-low-angle microtomy (cryo-ULAM) preparation technique we were able to determine, by XPS, elemental and chemical gradients within a 25 μm thick polyester-based organic coating deposited on steel. The gradients were related to, for example, depletion of the crosslinking agent in the sub-surface region. Complementary reflection electron energy-loss spectroscopy measurements performed on the cryo-ULAM sections also support the findings obtained from the XPS depth profiles.
Figure
Top view of the sample as imaged in 3D by FF-OCM is shown in a). In b) a side view of the 3D sample structure simultaneously exhibiting the coating surface and substrate-coating interface is depicted. Compositional XPS-depth profile of the coating prepared by cryo-ULAM is shown in c)  相似文献   

11.
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007?C2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations.
Figure
Schematic illustrating the process for heparin impurity characterization  相似文献   

12.
This paper describes a reliable and sensitive method for sensing dissolved acetone using doped nanomaterials. Large-scale synthesis of ZnO nanorods (NRs) doped with Co3O4 was accomplished by a solvothermal method at low temperature. The doped NRs were characterized in terms of their morphological, structural, and optical properties by using field-emission scanning electron microscopy coupled with energy-dispersive system, UV-Vis., Fourier transform IR, X-ray diffraction, and Xray photoelectron spectroscopy. The calcinated (at 400 °C) doped NRs are shown to be an attractive semiconductor nanomaterial for detecting acetone in aqueous solution using silver electrodes. The sensor exhibits excellent sensitivity, stability and reproducibility. The calibration plot is linear over a large concentration range (66.8 μM to 0.133 mM), displays high sensitivity (~3.58 μA cm?2 mM?1) and a low detection limit (~14.7?±?0.2 μM; at SNR of 3).
Figure
The present study describes a simple, reliable, accurate, sensitive, and cost effective method for the detection of acetone using solvothermally prepared semiconductor co-doped nanomaterials.  相似文献   

13.
The fabrication concept for a low-cost sensor device using reduced graphene oxide (rGO) as the sensing material on a porous paper substrate is presented. The sensors were characterized using conductivity and capacitance measurements, atomic force microscopy and X-ray photoelectron spectroscopy. The effects of different reducing agents, graphene oxide (GO) flake size and film thickness were studied. The sensor was sensitive to NO2, and devices based on a thin (10-nm) hydrazine-reduced GO layer had the best sensitivity, reaching a 70 % reduction in resistance after 10 min of exposure to 10 ppm NO2. The sensitivity was high enough for the detection of sub-parts per million levels of NO2. Desorption of gas molecules, i.e. the recovery of the sensor, could be accelerated by UV irradiation. The structure and preparation of the sensor are simple and up-scalable, allowing their fabrication in bulk quantities, and the fabrication concept can be applied to other materials, too.
Figure
Low‐cost reduced graphene oxide based conductometric nitrogen dioxide sensitive sensor on paper  相似文献   

14.
We report on the synthesis of a composite made from iridium oxide and gold that has a flower-like morphology. The ratio of iridium oxide to gold can be controlled by altering the concentrations of the metal precursors or the pH of the solution containing the reductant citrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and laser confocal micro-Raman spectroscopy were applied to characterize the structures of the nanoflowers, and a mechanism of their formation was deduced. The nanoflowers display an electrocatalytic activity in an oxygen evolution reaction (OER) that is significantly enhanced compared to bare iridium oxide nanoparticles. The highest turnover frequency for the OER of the new nanoflowers is 10.9?s?1, which is almost one order of magnitude better than that of the respective nanoparticles. These attractive features are attributed to the high oxidation states of iridium in the nanoflowers which is caused by the transfer of electronic charge from metal oxides to gold, and also to the flower fractal structure which is thought to provide a much more accessible surface than suspensions of the respective nanoparticle.
Figure
Gold and iridium oxide composites with nanoflower shapes have been successfully prepared. The nanoflowers display an electrocatalytic activity for the oxygen evolution reaction, which is significantly enhanced compared to bare iridium oxide nanoparticles.  相似文献   

15.
Two highly branched glucose polymers with similar structures—starch and glycogen—have important relations to human health. Slowly digestible and resistant starches have desirable health benefits, including the prevention and alleviation of metabolic diseases and prevention of colon cancer. Glycogen is important in regulating the use of glucose in the body, and diabetic subjects have an anomaly in their glycogen structure compared with that in healthy subjects. This paper reviews the biosynthesis–structure–property relations of these polymers, showing that polymer characterization produces knowledge which can be useful in producing healthier foods and new drug targets aimed at improving glucose storage in diabetic patients. Examples include mathematical modeling to design starch with better nutritional values, the effects of amylose fine structures on starch digestibility, the structure of slowly digested starch collected from in vitro and in vivo digestion, and the mechanism of the formation of glycogen α particles from β particles in healthy subjects. A new method to overcome a current problem in the structural characterization of these polymers using field-flow fractionation is also given, through a technique to calibrate evaporative light scattering detection with starch.
Figure
?  相似文献   

16.
A hydrothermal technique was used to synthesize nickel ferrite nanoparticles (NF-NPs) deposited on multi-walled carbon nanotubes (MWCNTs). The material was characterized by scanning electron microscopy, energy dispersive spectrometry, and X-ray powder diffraction which showed that the NF-NPs are located on the surface of the carboxylated MWCNTs. The material was used to modify a glassy carbon electrode which then was characterized via cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry. The electrode displays strong electrochemical response to hydrazine. A potential hydrazine sensing scheme is suggested.
Figure
A fast and sensitive hydrazine electrochemical sensor has been fabricated by dipping nickel ferrite/multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The sensor had excellent stability, rapid response, ease of construction and utilization for hydrazine determination.  相似文献   

17.
The objective of this study was to characterize an assortment of as received, commercially available, non-functionalized multiwalled carbon nanotubes (MWCNT) samples (n?=?24) using thermogravimetric analysis, energy dispersive X-ray fluorescence spectrometry, high-resolution transmission electron microscopy and scanning electron microscopy. Each sample was assigned to one of six types based on nominal length and diameter. Some of the samples from the product assortment exhibited significant differences in purity and morphology from their nominal values. Variability in the physicochemical properties of MWCNTs may be a significant factor in why many toxicological investigations have findings that are difficult to reproduce. Therefore, it is strongly recommended that investigators studying these materials present characterization information in addition to providing their source.
Figure
TGA and XRF purity by type of MWCNT sample. The objective of this study was to characterize an assortment of commercially available, non-functionalized of multiwalled carbon nanotubes (MWCNT) samples using thermogravimetric analysis, energy dispersive X-ray fluorescence spectrometry, high-resolution transmission electron microscopy and scanning electron microscopy. Variability in the physicochemical properties of MWCNTs may be a significant factor in why many toxicological investigations have findings that are difficult to reproduce. Therefore, it is strongly recommended that investigators studying these materials present characterization information with their research findings in addition to providing their source.  相似文献   

18.
We have studied the effect of treatment of multiwalled carbon nanotubes (MWCNTs) for use in DNA-based biosensors with oxygen plasma. Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film in a lab-made plasma chamber. The resulting electrodes exhibited a dramatic change in the morphology of their surface, the chemical composition, and the electrochemical properties in terms of peak current and peak potential separation. The electrodes also showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes. Plasma treatment was optimized and electrodes were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and differential pulse voltammetry.
Figure
Well-patterned MWCNT electrodes were photolithographically fabricated on glass substrates. Pure oxygen was used for etching and functionalization of the MWCNT film. The electrodes showed increased DNA immobilization efficiency and much higher sensitivity in the detection of target DNA as compared to non-treated MWCNT electrodes  相似文献   

19.
We have prepared a nanocomposite consisting of single-walled carbon nanotubes and polylysine. It was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and by UV/vis and FTIR spectroscopy. Tyrosinase was covalently immobilized on the nanocomposite, and the resulting bioconjugate deposited on a glassy carbon electrode to form a biosensor for bisphenol A. The biosensor was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Under optimized experimental conditions, the biosensor gives a linear response to bisphenol A in the 4.00 nM to 11.5 μM concentration range. Its sensitivity is 788 mA M?1 cm?2, and the lower detection limit is 0.97 nM (at an S/N of 3). The biosensor shows good repeatability, reproducibility and long-term stability. In a preliminary practical application, it was successfully applied to the determination of bisphenol A in leachates of plastic spoons.
Figure
Single-walled carbon nanotubes-polylysine (SWCNT-PLL) nanocomposite was prepared and thoroughly characterized. The obtained nanocomposite was used as a platform to immobilize tyrosinase (Tyr) onto a glassy carbon electrode (GCE) to fabricate a biosensor for bisphenol A (BPA)  相似文献   

20.
Carbon fiber microelectrode amperometry (CFMA) is explored as a technique for studying the effects of immunotoxicants on single-cell in vitro exocytosis function in a mouse peritoneal mast cell (MPMC)/fibroblast co-culture model. MPMCs were acutely exposed to between 10 and 100 μM of the immunotoxicants mono-2-ethylhexyl phthalate (MEHP) and bisphenol A (BPA), and release of serotonin was evaluated by CFMA. A significant decrease in the quantal content of serotonin was measured for all levels of exposure to both MEHP and BPA. The overall efficiency of the exocytotic function of MPMCs was found to be impaired by all exposure concentrations of BPA, but this efficiency was only impaired at the lowest exposure concentration of MEHP. This study illustrates the potential of CFMA as a technique for determining quantitative and biophysical chemical information in in vitro immunotoxicological studies.
Figure
Single-cell amperometry from a mast cell exposed to mono-2-ethylhexyl phthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号