首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hollow fiber membrane liquid-phase microextraction (LPME), target analytes are extracted from aqueous samples and into a supported liquid membrane (SLM) sustained in the pores in the wall of a small porous hollow fiber, and further into an acceptor phase present inside the lumen of the hollow fiber. The acceptor phase can be organic, providing a two-phase extraction system compatible with capillary gas chromatography, or the acceptor phase can be aqueous resulting in a three-phase system compatible with high-performance liquid chromatography or capillary electrophoresis. Due to high enrichment, efficient sample clean-up, and the low consumption of organic solvent, substantial interest has been devoted to LPME in recent years. This paper reviews important applications of LPME with special focus on bioanalytical and environmental chemistry, and also covers a new possible direction for LPME namely electromembrane extraction, where analytes are extracted through the SLM and into the acceptor phase by the application of electrical potentials.  相似文献   

2.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(28):4299-4306
For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.  相似文献   

3.
Liquid phase microextraction with back extraction (LPME/BE) combined with high-performance liquid chromatography (HPLC) was studied for the determination of a variety of phenols in water samples. The target compounds were extracted from 2-ml aqueous sample adjusted to pH 1 (donor solution) through a microliter-size organic solvent phase (400-microl n-hexane), confined inside a small PTFE ring, and finally into a 1-microl basic aqueous acceptor microdrop suspended inthe aforementioned solvent phase from the tip of a microsyringe needle. After extracting for a prescribed time, the microdrop was taken back into the syringe and directly injected into an HPLC for detection. Factors relevant to the extraction procedure were studied. At the optimized extraction conditions, a large enrichment factor (more than 100-fold) can be achieved for most of the phenols within 35 min. The detection limit range was 0.5-2.5 microg/l for different analytes in aqueous samples. The results demonstrate the suitability of the LPME/BE approach to the analysis of polar compounds in aqueous samples.  相似文献   

4.
A method for sample preparation of methoxy-s-triazine herbicides using supported liquid membrane extraction has been developed. The analytes were selectively extracted from the donor solution of pH 7.0 into a porous polytetrafluoroethylene (PTFE) membrane impregnated with di-n-hexyl ether. After diffusion through the hydrophobic membrane the analytes were irreversibly trapped in the acidic acceptor phase of pH 1.0. The donor waste was monitored for estimating the amount of sample trapped at certain time intervals. Comparison of the selectivity with solid-phase extraction has been performed. A low detection limit, ca. 15 ng/l, has been obtained with liquid membrane extraction.  相似文献   

5.
In the present study, electro membrane isolation (EMI) of four nerve agent degradation products has been successfully explored. In the procedure, a polypropylene sheet membrane folded into an envelope with an open end with its wall pores impregnated with 1-octanol was employed as the artificial supported liquid membrane (SLM). The envelope containing the extractant or aqueous acceptor phase (at pH 6.8) was immersed in the sample or donor phase (also aqueous at a pH of 6.8) for extraction. This ensured that the target analytes were fully ionized. A voltage was then applied, with the negative electrode placed in the donor phase with agitation, and the positive electrode in the acceptor phase. The ionized analytes were thus driven to migrate from the donor phase across the SLM to the acceptor phase. The factors influential to extraction: type of organic solvent, voltage, agitation speed, extraction time, pH of the donor and acceptor phase and concentration of humic acids were investigated in detail. After extraction, the acceptor phase was collected and directly injected for capillary electrophoretic (CE) analysis. Combined with capacitively coupled contactless conductivity detection (C(4)D), the direct detection of these compounds could be achieved. Moreover, large-volume sample injection was employed to further enhance the sensitivity of this method. Limits of detection (LODs) as low as ng/mL were reached for the studied analytes, with overall LOD enhancements of four orders of magnitude.  相似文献   

6.
A new type of dispersive liquid–liquid microextraction is used for the determination of doxepin, citalopram, and fluvoxamine in aqueous matrices. This method is based upon the tandem utilization of dispersive liquid–liquid microextraction, and by providing a high sample clean‐up, it efficiently improves the applicability of the method in complicated matrices. For this purpose, in the first step, the analytes contained in an aqueous sample solution (8.0 mL) were extracted into an organic solvent, and then these analytes were simply back‐extracted into an aqueous acceptor phase (50 μL). The overall extraction time was 7 min, and very simple tools were required for this aim. Optimization of the variables affecting the method such as the type and volume of the organic solvent used and effect of ionic strength was carried out to achieve the best extraction efficiency. Under the optimized experimental conditions, tandem dispersive liquid–liquid microextraction with high‐performance liquid chromatography and UV detection showed a good linearity in the range of 10–5000 ng/mL. The limits of detection were in the range of 3–10 ng/mL. The Intra‐day precisions (relative standard deviation) were 9.2, 4.5, and 4.8, and the recoveries were 58.5, 52.9, and 39.3% for citalopram, doxepin, and fluvoxamine, respectively.  相似文献   

7.
A simple liquid-liquid-liquid microextraction device utilizing a 2 cm x 0.6 mm I.D. hollow fiber membrane was used to preconcentrate nitrophenols from water sample prior to capillary liquid chromatography (cLC) analysis. The extraction procedure was induced by the pH difference inside and outside the hollow fiber. The donor phase outside the hollow fiber was adjusted to pH approximately 1 with HCl; the acceptor phase was NaOH solution used at various concentrations. Organic solvent was immobilized into the pores of the hollow fiber. With stirring, the neutral nitrophenols outside the fiber were extracted into the organic solvent, then back extracted into 2 microl of basic acceptor solution inside the fiber. The acceptor phase was then withdrawn into a microsyringe and injected into the cLC system directly. This technique used a low-cost disposable extraction "device" and is very convenient to operate. Up to 380-fold enrichment of analytes could be achieved. This procedure could also serve as a sample clean-up step because large molecules and basic compounds were not extracted into the acceptor phase. The RSD (n=6) was less than 6.2%, while the linear calibration range was from 1 to 200 microg/ml with r>0.998. The procedure was applied to the analysis of seawater.  相似文献   

8.
A simple, environmentally friendly, and efficient method, based on hollow‐fiber‐supported liquid membrane microextraction, followed by high‐performance liquid chromatography has been developed for the extraction and determination of amlodipine (AML) and atorvastatin (ATO) in water and urine samples. The AML in two‐phase hollow‐fiber liquid microextraction is extracted from 24.0 mL of the aqueous sample into an organic phase with microliter volume located inside the pores and lumen of a polypropylene hollow fiber as acceptor phase, but the ATO in three‐phase hollow‐fiber liquid microextraction is extracted from aqueous donor phase to organic phase and then back‐extracted to the aqueous acceptor phase, which can be directly injected into the high‐performance liquid chromatograph for analysis. The preconcentration factors in a range of 34–135 were obtained under the optimum conditions. The calibration curves were linear (R2 ≥ 0.990) in the concentration range of 2.0–200 μg/L for AML and 5.0–200 μg/L for ATO. The limits of detection for AML and ATO were 0.5 and 2.0 μg/L, respectively. Tap water and human urine samples were successfully analyzed for the existence of AML and ATO using the proposed methods.  相似文献   

9.
A supported liquid membrane system has been developed for the extraction of vanillin from food samples. A porous PTFE membrane is impregnated with an organic solvent, which forms a barrier between two aqueous phases. The analyte is extracted from a donor phase into the hydrophobic membrane and then back extracted into a second aqueous solution, the acceptor. The determination (100–1400 μg ml−1 vanillin) was performed using a PVC-graphite composite electrode versus Ag/AgCl/3MKCl at +0.850 V placed in a wall-jet flow cell as amperometric detector. The solid sample is directly placed in the membrane unit without any treatment, and the analyte was extracted from the sample, passes through the membrane and conduced to the flow cell by the acceptor stream. The limit of detection (3σ) was 44 μg ml−1. The method was applied to the determination of vanillin (9–606 μg g−1) in food samples.  相似文献   

10.
Mulugeta M  Megersa N 《Talanta》2004,64(1):101-108
Supported liquid membrane (SLM) method for preconcentration and enrichment of the two bipyridilium herbicides, namely diquat and paraquat, from environmental water samples has been developed. The permanently charged cationic herbicides were extracted from a flowing aqueous solution to a stagnant acidic acceptor solution across a liquid membrane containing 40% (v/v) di-(2-ethylhexyl) phosphoric acid dissolved in di-n-hexyl ether. The mass transfer of analytes is driven by the counter-coupled transport of hydrogen ions from the acceptor to the donor phase. The efficiency of the extraction process depends on the donor solution pH, the amount of the mobile carrier added to the liquid membrane and the concentration of the counter ion in the acceptor solution. The applicability of the method for extraction of these quaternary ammonium herbicides from environmental waters was also investigated by spiking analyte sample solutions in river water. With 24 h sample enrichment concentrations of diquat and paraquat down to ca. 10 ng/L could be detected in environmental waters.  相似文献   

11.
Basic studies on carrier-mediated transport as a mechanism to extract polar drugs by hollow fibre-based liquid-phase microextraction are presented for the first time. Hydrophilic alkaline drugs with log P (octanol/water partition coefficient) values less than 1 were selected as model substances. Sodium octanoate served as carrier and was added to the sample solution at pH 7 to form hydrophobic ion-pair complexes with the analytes. The ion-pair complexes were extracted into octanol as liquid membrane immobilised in the pores of the hollow fibre. Further extraction into an aqueous acceptor phase inside the lumen of the hollow fibre was facilitated by counter transport of protons from the acceptor solution to the sample solution. Protons from the acceptor solution released the analytes at the liquid membrane-acceptor interface and neutralized the carrier. The acceptor phase was analysed by capillary electrophoresis. The studies show that high extraction recoveries of ionic hydrophilic drugs can be obtained at a sample-acceptor volume ratio of 10. Linear calibration graphs and clean electropherograms indicate that carrier-mediated transport is a promising technique in microextraction of polar drugs from biological matrices.  相似文献   

12.
In this article, a simple new solvent microextraction technique is described for the extraction of ionizable organic compounds. This involves performing simultaneous forward- and back-extraction across an organic film immobilized in the pores of a porous polypropylene hollow fiber. Four chlorophenoxyacetic acid herbicides were chosen as model compounds. The target compounds are extracted from the stirred acidic aqueous sample (adjusted to 0.5 M HCl; donor phase) through a thin film of an organic solvent residing in the pores of a polypropylene hollow fiber; they are then finally extracted into another alkaline aqueous phase (1 M NaOH; acceptor phase). Both ends of the fiber are pressure-sealed. The acceptor phase was analyzed by liquid chromatography (LC). This method gave good enrichment (by a factor of 438-553) of the analytes in 40 min extraction time with reasonably good reproducibility. The analytical potential of the method was demonstrated by applying the method to spiked river water sample.  相似文献   

13.
A simple method is introduced providing a highly clean microextraction for the determination of some anti‐inflammatory drugs as the model analytes in human urine and environmental matrices. This method is based upon the implementation of two consecutive emulsification liquid‐phase microextractions, which are separated by a syringe filtration step. In this method, the organic extraction solvent (dihexyl ether) is dispersed into the aqueous sample solution (20 mL), and the resulting cloudy mixture is passed through a hydrophilic polytetrafluoroethylene syringe filter. By this action, the extraction phase containing the analytes and many interfering species that could be transferred into the organic phase is retained behind the hydrophilic membrane. The filter is then detached from the syringe and attached to another syringe containing an aqueous solution (pH 12.0, 150 μL), and by the in‐syringe dispersion of the organic phase into the aqueous phase, the analytes are selectively back‐extracted into the aqueous phase. The developed method is centrifuge‐free and very simple, and provides a high sample clean‐up in a few minutes. Under the optimized experimental conditions, the developed method provided a linearity in the range of 2.0–2000 ng/mL, a low limit of detection (0.5 ng/mL), and enrichment factors of 47–53.  相似文献   

14.
A simple liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase (LLLME/AMADP) technique is described for the quantitative determination of five phenoxyacetic acids in water using a disposable and ready to use hollow fiber. The target compounds were extracted from the acidified sample solution (donor phase) into the organic solvent residing in the pores of the hollow fiber and then back extracted into the alkaline solution (acceptor phase) inside the lumen of the hollow fiber. The fiber was held by a conventional 10-microl syringe. The acceptor phase was sandwiched between the plunger and a small volume of the organic solvent (microcap). The acceptor solution was repeatedly moved in and out of the hollow fiber assisted by a programmable syringe pump. This repeated movement provides a fresh acceptor phase to come in-contact with the organic phase and thus enhancing extraction kinetics leading to high enrichment of the analytes. The microcap separates the aqueous acceptor phase and the donor phase in addition of being partially responsible for mass transfer of the analytes from donor solution (moving in and out of the hollow fiber from the open end of the fiber) to the acceptor solution. Separation and quantitative analyses were then performed using liquid chromatography (LC) with ultraviolet (UV) detection at 280 nm. Various parameters affecting the extraction efficiency viz. type of organic solvent used for immobilization in the pores of the hollow fiber, extraction time, stirring speed, effect of sodium chloride, and concentration of donor and acceptor phases were studied. Repeatability (RSD, 3.2-7.4%), correlation coefficient (0.996-0.999), detection limit (0.2-2.8 ng ml(-1)) and enrichment factors (129-240) were also investigated. Relative recovery (87-101%) and absolute recoveries (4.6-13%) have also been calculated. The developed method was applied for the analysis of river water.  相似文献   

15.
The influence of temperature in a supported liquid membrane (SLM) extraction of triazole fungicides was investigated. The mass transfer parameters such as diffusion coefficient, flux and apparent viscosity were determined at temperatures ranging from 5 to 40°C. Increase in temperature led to an increase in diffusion coefficient and flux with a flowing acceptor solution. The apparent viscosity also decreased with an increase in temperature. However, the increase in mass transfer parameters did not result in an overall increase in extraction efficiency with a stagnant or circulation acceptor phase. Stripping of the analytes from the membrane into the acceptor phase as well as the configuration of the extraction unit could have limited the influence of temperature on mass transfer. The partition coefficient of analytes from the acceptor solution to the membrane, KA, was found to be much higher than that from the donor solution to the membrane KD, thus triazole compounds preferred to remain in the membrane even with an increased extraction temperature.  相似文献   

16.
Electrokinetic cross membrane extraction of acidic drugs was demonstrated for the first time. The acidic drugs were extracted from an alkaline aqueous donor solution (300 microl), through a thin supported liquid membrane of 1-heptanol sustained in the pores of the wall of a porous hollow fiber, and into an aqueous alkaline acceptor solution (30 microl) present inside the lumen of the hollow fiber by the application of a d.c. electrical potential. The negative electrode was placed in the donor solution, and the positive electrode was placed in the acceptor solution. Optimal extractions were accomplished with 1-heptanol as the supported liquid membrane, with 50 V as the driving force, and with pH 12.0 in both the donor and acceptor solutions, respectively (NaOH). Equilibrium extraction conditions were obtained after 5 min of operation with the whole assembly agitated at 1200 rpm. Eleven different acidic drugs were extracted with recovery values between 8 and 100%, and initial data supported that electrokinetic cross membrane extraction provided repeatable data and linear response between original donor concentration and final acceptor concentration of the acidic model compounds.  相似文献   

17.
Sample preparation, such as extraction, concentration, and isolation of analytes, greatly influences their reliable and accurate analysis. In-tube solid-phase microextraction (SPME) is a new effective sample preparation technique using an open tubular fused-silica capillary column as an extraction device. Organic compounds in aqueous samples are directly extracted and concentrated into the stationary phase of capillary columns by repeated draw/eject cycles of sample solution, and they can be directly transferred to the liquid chromatographic column. In-tube SPME is an ideal sample preparation technique because it is fast to operate, easy to automate, solvent-free, and inexpensive. On-line in-tube SPME-performed continuous extraction, concentration, desorption, and injection using an autosampler, is usually used in combination with high performance liquid chromatography and liquid chromatography-mass spectrometry. This technique has successfully been applied to the determination of various compounds such as pesticides, drugs, environmental pollutants, and food contaminants. In this review, an overview of the development of in-tube SPME technique and its applications to environmental, clinical, forensic, and food analyses are described.  相似文献   

18.
The oscillatory behavior of a nitromethane based liquid membrane oscillator was investigated to contribute to the oscillation mechanism at the molecular level. At the beginning the system contains three phases: the aqueous donor phase in which the cationic surfactant, hexadecyltrimethylammonium bromide and ethanol are present and the aqueous acceptor phase made up by sucrose solution separated by the liquid membrane containing a constant amount of picric acid. During experiment a new phase x is created between the liquid membrane and acceptor phase. It was established that the oscillations take place at the membrane/phase x and the phase x/acceptor phase interfaces. Five basic regions can be distinguished in the oscillation pattern. The molecular events provoking the oscillations of electric potential difference between the two aqueous phases involve essentially the diffusion of hexadecyltrimethylammonium bromide and ion pairs formed by the cation of the surfactant and the picrate anion to the vicinity of the membrane/phase x interface, sudden adsorption of these ion pairs at this interface in noncatalytic and autocatalytic steps, desorption of ion pairs from the membrane/phase x interface into phase x, diffusion of ion pairs to the vicinity of phase x/acceptor phase interface, and sudden adsorption at this interface followed by desorption to the aqueous acceptor phase. It is shown by numerical simulations that the proposed mechanism may account for the observed oscillations and for the species distribution throughout the system as found experimentally. This four-phase system behaves like two coupled oscillators.  相似文献   

19.
A quantitative liquid chromatography coupled with high-resolution mass spectrometry method was developed for the determination of more than one hundred compounds belonging to a variety of veterinary drug classes in bovine milk. Salting out supported liquid extraction (SOSLE), a novel extraction and cleanup technique, was introduced to ensure high extraction efficiency and good sample cleanup. The high salt (ammonium sulfate) concentration in the aqueous donor phase permits supported liquid/liquid extraction (SLE) with a relative polar organic acceptor phase (acetonitrile). This is different from traditional SLE, in which the need for phase separation results in the selection of organic solvents with intermediate polarities (e.g., ethyl acetate or dichloromethane). Hence, SOSLE is more efficient in recovering polar analytes than conventional SLE. SOSLE was also compared to classical approaches like solid phase extraction, QuEChERS and ultra-filtration. The proposed technique resulted in extracts of equal or superior cleanliness and with higher average recoveries than those obtained with QuEChERS or SPE. The recovery (median for all compounds) was 73% for QuEChERS, 83% for SPE and 91% for SOSLE. The most significant improvements were observed for polar analytes (penicillines, quinolones and tetracyclines) which are hardly recovered by QuEChERS. The chromatographic separation and detection was based on an ultra-high-performance liquid chromatography Q-Orbitrap system (Q-Exactive plus). The developed analytical method has been validated (based on the commission decision 2002/957/EC) as required for quantitative veterinary drug methods.  相似文献   

20.
In the present study, a simple and rapid method for the extraction and preconcentration of some polycyclic aromatic hydrocarbons in water samples has been developed. In this method, two sample preparation methods were combined to obtain high extraction recoveries and enrichment factors for sensitive analysis of the selected analytes. In the first stage of the method, a homogeneous solution containing an aqueous solution and cyclohexyl amine is broken by the addition of a salt. After centrifugation, the upper collected phase containing the extracted analytes is subjected to the following dispersive liquid–liquid microextraction method. Rapid injection of the mixture of cyclohexyl amine resulted from the first stage and 1,1,2‐trichloroethane (as an extraction solvent) into an acetic acid solution is led to form a cloudy solution. After centrifuging, the fine droplets of the extraction solvent are settled down in the bottom of the test tube, and an aliquot of it is analyzed by gas chromatography. Under the optimum extraction conditions, enrichment factors and limits of detection for the studied analytes were obtained in the ranges of 616–752 and 0.08–0.20 μg/L, respectively. The simplicity, high extraction efficiency, short sample preparation time, low cost, and safety demonstrated the efficiency of this method relative to other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号