首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To gain insight in relationships among capillary pressure, interfacial area, saturation, and relative permeability in two-phase flow in porous media, we have developed two types of pore-network models. The first one, called tube model, has only one element type, namely pore throats. The second one is a sphere-and-tube model with both pore bodies and pore throats. We have shown that the two models produce distinctly different curves for capillary pressure and relative permeability. In particular, we find that the tube model cannot reproduce hysteresis. We have investigated some basic issues such as effect of network size, network dimension, and different trapping assumptions in the two networks. We have also obtained curves of fluid–fluid interfacial area versus saturation. We show that the trend of relationship between interfacial area and saturation is largely influenced by trapping assumptions. Through simulating primary and scanning drainage and imbibition cycles, we have generated two surfaces fitted to capillary pressure, saturation, and interfacial area (P c S w a nw ) points as well as to relative permeability, saturation, and interfacial area (k r S w a nw ) points. The two fitted three-dimensional surfaces show very good correlation with the data points. We have fitted two different surfaces to P c S w a nw points for drainage and imbibition separately. The two surfaces do not completely coincide. But, their mean absolute difference decreases with increasing overlap in the statistical distributions of pore bodies and pore throats. We have shown that interfacial area can be considered as an essential variable for diminishing or eliminating the hysteresis observed in capillary pressure–saturation (P c S w ) and the relative permeability–saturation (k r S w ) curves.  相似文献   

2.
Accurate models of multiphase flow in porous media and predictions of oil recovery require a thorough understanding of the physics of fluid flow. Current simulators assume, generally, that local capillary equilibrium is reached instantaneously during any flow mode. Consequently, capillary pressure and relative permeability curves are functions solely of water saturation. In the case of imbibition, the assumption of instantaneous local capillary equilibrium allows the balance equations to be cast in the form of a self-similar, diffusion-like problem. Li et al. [J. Petrol. Sci. Eng. 39(3) (2003), 309–326] analyzed oil production data from spontaneous countercurrent imbibition experiments and inferred that they observed the self-similar behavior expected from the mathematical equations. Others (Barenblatt et al. [Soc. Petrol. Eng. J. 8(4) (2002), 409–416]; Silin and Patzek [Transport in Porous Media 54 (2004), 297–322]) assert that local equilibirum is not reached in porous media during spontaneous imbibition and nonequilibirium effects should be taken into account. Simulations and definitive experiments are conducted at core scale in this work to reveal unequivocally nonequilbirium effects. Experimental in-situ saturation data obtained with a computerized tomography scanner illustrate significant deviation from the numerical local-equilibrium based results. The data indicates: (i) capillary imbibition is an inherently nonequilibrium process and (ii) the traditional, multi-phase, reservoir simulation equations may not well represent the true physics of the process.  相似文献   

3.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

4.
We focus on the numerical difficulties that typify implicit pressure explicit saturation (IMPES) schedules in dynamic “ball-and-stick” pore network models for two-phase flow. We show that a time stepping procedure based on a prescribed maximum variation of the local capillary pressure rather than on a (usual) maximum variation of the local saturation along with the addition in the solution algorithm of suitable “flow constraints” (in Koplik and Lasseter, Soc. Pet. Eng. J. 25(1):89–100, 1985) provide more stability and a significant run time speed up. In particular, the slow convergence and the oscillatory behavior that typify IMPES schemes at low Ca values due to capillary pinning are efficiently suppressed.  相似文献   

5.
Unsteady-state (USS) core flood experiments provide data for deriving two-phase relative permeability and capillary pressure functions. The experimental data is uncertain due to measurement errors, and the accuracy of the derived flow functions is limited by both data and modeling errors. History matching provides a reasonable means of deriving in-phase flow functions from uncertain unsteady-state experimental data. This approach is preferred to other analytical procedures, which involve data smoothing and differentiation. Data smoothing leads to loss of information while data differentiation is a mathematically unstable procedure, which could be error magnifying. The problem is non-linear, inverse and ill posed. Hence the history-matching procedure gives a non-unique solution. This paper presents a procedure for quantifying the uncertainty in two-phase flow functions, using unsteady-state experimental data. We validate the methodology using synthetic data. We investigate the impact of uncertain flow functions on a homogeneous reservoir model using the Buckley–Leverett theory. Using a synthetic, heterogeneous reservoir model, we estimate the uncertainty in oil recovery efficiency due to uncertainty in the flow functions.  相似文献   

6.
The capillary pressure–saturation relationship, P c(S w), is an essential element in modeling two-phase flow in porous media (PM). In most practical cases of interest, this relationship, for a given PM, is obtained experimentally, due to the irregular shape of the void space. We present the P c(S w) curve obtained by basic considerations, albeit for a particular class of regular PM. We analyze the characteristics of the various segments of the capillary pressure curve. The main features are the behavior of the P c(S w) curve as the wetting-fluid saturation approaches zero, and as this saturation is increased beyond a certain critical value. We show that under certain conditions (contact angle, distance between spheres, and saturation), the value of the capillary pressure may change sign.  相似文献   

7.
This paper presents experimental investigations on Freon R141b flow boiling in rectangular microchannel heat sinks. The main aim is to provide an appropriate working fluid for microchannel flow boiling to meet the cooling demand of high power electronic devices. The microchannel heat sink used in this work contains 50 parallel channels, with a 60 × 200 (W × H) μm cross-section. The flow boiling heat transfer experiments are performed with R141b over mass velocities ranging from 400 to 980 kg/(m2 s) and heat flux from 40 to 700 kW/m2, and the outlet pressure satisfying the atmospheric condition. The fluid flow-rate, fluid inlet/outlet temperature, wall temperature, and pressure drop are measured. The results indicate that the mean heat transfer coefficient of R141b flow boiling in present microchannel heat sinks depends heavily on mass velocity and heat flux and can be predicted by Kandlikar’s correlation (Heat Transf Eng 25(3):86–93, 2004). The two-phase pressure drop keeps increasing as mass velocity and exit vapor quality rise.  相似文献   

8.
Measurement of drainage relative permeability by the centrifuge method was first introduced by Hagoort (SPE J. 29(3):139–150, 1980). It has been shown that capillary end effects can cause error in the measurement of relative permeability if a minimum rotational speed is not honoured. To determine the minimum rotational speed that makes the capillary end effect negligible, ω min, we propose that the value of capillary-gravity number, N cg, should be of the order of 10−2 or smaller. This conclusion is based on the use a Forward–backward scheme consisting of a forward numerical simulator developed for centrifuge experiments and applying Hagoort’s method as a backward model. The article presents the use of this Forward–backward scheme as a powerful tool for error analysis such as determining the impact of capillary end effects. By using this loop, we first determine ω min for specific core and fluid properties. Later, we generalize the ω min calculations by using the definition of N cg as a “rule of thumb” for designing relative permeability experiments by centrifuge method. We also demonstrate another use of this loop for controlling the quality of the experimental data.  相似文献   

9.
This study reports an investigation on the characteristics of single-phase (brine) and two-phase (DNAPL–brine) flows in induced fractures. The fracture aperture and fluid phase distributions were determined using X-ray computer tomography. In the single-phase flow tests, the pressure gradient across the induced fractures increases linearly with increasing flow rate. However, models based on the measured aperture do not yield a consistent match with the experimental data because the effect of pressure losses due to aperture variation and undulation are not taken into account. In the two-phase flow tests, the measured phase distributions reveal that the flow pattern is dominated by a dispersed or mixed flow in which either DNAPL or brine phase is discontinuous. The channel flow pattern, in which DNAPL and brine phases are continuous in the fracture and well represented by the widely used Romm’s relative permeability relationship was not observed in this study. In contrast, a Lockhart–Martinelli-type correlation developed for gas–liquid flow in pipes was found to match the pressure gradient and phase saturation results obtained from the laboratory tests.  相似文献   

10.
This article describes a semi-analytical model for two-phase immiscible flow in porous media. The model incorporates the effect of capillary pressure gradient on fluid displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation profile for the stabilized-zone around the displacement front and the end-effects near the core outlet. The model is valid for both drainage and imbibition oil–water displacements in porous media with different wettability conditions. A stepwise procedure is presented to derive relative permeabilities from coreflood displacements using the proposed semi-analytical model. The procedure can be utilized for both before and after breakthrough data and hence is capable to generate a continuous relative permeability curve unlike other analytical/semi-analytical approaches. The model predictions are compared with numerical simulations and laboratory experiments. The comparison shows that the model predictions for drainage process agree well with the numerical simulations for different capillary numbers, whereas there is mismatch between the relative permeability derived using the Johnson–Bossler–Naumann (JBN) method and the simulations. The coreflood experiments carried out on a Berea sandstone core suggest that the proposed model works better than the JBN method for a drainage process in strongly wet rocks. Both methods give similar results for imbibition processes.  相似文献   

11.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

12.
A one-dimensional pressure filtration model that can be used to predict the behaviour of bagasse pulp has been developed and verified in this study. The dynamic filtration model uses steady state compressibility parameters determined experimentally by uniaxial loading. The compressibility parameters M and N for depithed bagasse pulp were determined to be in the ranges 3000–8000 kPa and 2.5–3.0 units, respectively. The model also incorporates experimentally determined steady state permeability data from separate experiments to predict the pulp concentration and fibre pressure throughout a pulp mat during dynamic filtration. Under steady state conditions, a variable Kozeny factor required different values for the permeability parameters when compared to a constant Kozeny factor. The specific surface area was 25–30% lower and the swelling factor was 20–25% higher when a variable Kozeny factor was used. Excellent agreement between experimental data and the dynamic filtration model was achieved when a variable Kozeny factor was used.  相似文献   

13.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

14.
Let u(ε) be a rescaled 3-dimensional displacement field solution of the linear elastic model for a free prismatic rod Ωε having cross section with diameter of order ε, and let u (0) –Bernoulli–Navier displacement – and u (2) be the two first terms derived from the asymptotic method. We analyze the residue r(ε) = u(ε) − (u (0) + ε2 u (2)) and if the cross section is star-shaped, we prove such residue presents a Saint-Venant"s phenomenon near the ends of the rod. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
E. Erdem  K. Kontis 《Shock Waves》2010,20(2):103-118
The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier–Stokes equations with κω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.  相似文献   

16.
Non-Newtonian fluid flow through porous media is of considerable interest in several fields, ranging from environmental sciences to chemical and petroleum engineering. In this article, we consider an infinite porous domain of uniform permeability k and porosity f{\phi} , saturated by a weakly compressible non-Newtonian fluid, and analyze the dynamics of the pressure variation generated within the domain by an instantaneous mass injection in its origin. The pressure is taken initially to be constant in the porous domain. The fluid is described by a rheological power-law model of given consistency index H and flow behavior index n; n, < 1 describes shear-thinning behavior, n > 1 shear-thickening behavior; for n = 1, the Newtonian case is recovered. The law of motion for the fluid is a modified Darcy’s law based on the effective viscosity μ ef , in turn a function of f, H, n{\phi, H, n} . Coupling the flow law with the mass balance equation yields the nonlinear partial differential equation governing the pressure field; an analytical solution is then derived as a function of a self-similar variable ηrt β (the exponent β being a suitable function of n), combining spatial coordinate r and time t. We revisit and expand the work in previous papers by providing a dimensionless general formulation and solution to the problem depending on a geometrical parameter d, valid for plane (d = 1), cylindrical (d = 2), and semi-spherical (d = 3) geometry. When a shear-thinning fluid is considered, the analytical solution exhibits traveling wave characteristics, in variance with Newtonian fluids; the front velocity is proportional to t (n-2)/2 in plane geometry, t (2n-3)/(3−n) in cylindrical geometry, and t (3n-4)/[2(2−n)] in semi-spherical geometry. To reflect the uncertainty inherent in the value of the problem parameters, we consider selected properties of fluid and matrix as independent random variables with an associated probability distribution. The influence of the uncertain parameters on the front position and the pressure field is investigated via a global sensitivity analysis evaluating the associated Sobol’ indices. The analysis reveals that compressibility coefficient and flow behavior index are the most influential variables affecting the front position; when the excess pressure is considered, compressibility and permeability coefficients contribute most to the total response variance. For both output variables the influence of the uncertainty in the porosity is decidedly lower.  相似文献   

17.
 This article presents the results of laboratory research on heat exchange while heating water in horizontal and vertical tubes with twisted-tape inserts. The scope of the research: 70 ≤ Re ≤ 4000 3.6 ≤ Pr ≤ 5.9 8.6 ≤ Gz ≤ 540 The research was held for three cases: – horizontal experimental tube – vertical experimental tube, the direction of flow according to the free convection vector – vertical experimental tube, the direction of flow not in accordance with the free convection vector For such cases the correlation equation was defined NuT=f(Gz; y), Nu = f(Gz) and the proportion NuT/Nu was analysed. Received on 30 March 2000  相似文献   

18.
This article is concerned with the global regularity of weak solutions to systems describing the flow of shear thickening fluids under the homogeneous Dirichlet boundary condition. The extra stress tensor is given by a power law ansatz with shear exponent p≥ 2. We show that, if the data of the problem are smooth enough, the solution u of the steady generalized Stokes problem belongs to W1,(np+2-p)/(n-2)(W){W^{1,(np+2-p)/(n-2)}(\Omega)} . We use the method of tangential translations and reconstruct the regularity in the normal direction from the system, together with anisotropic embedding theorem. Corresponding results for the steady and unsteady generalized Navier–Stokes problem are also formulated.  相似文献   

19.
The Simha–Somcynsky (S–S) equation of state (eos) was used to compute the free volume parameter, h, from the pressure–volume–temperature (PVT) dependencies of eight molten polymers. The predicted by eos variation of h with T and P was confirmed by the positron annihilation lifetime spectroscopy; good agreement was found for h(P = constant) = h(T) as well as for h(T = constant) = h(P). Capillary shear viscosity (η) data of the same polymers (measured at three temperatures and six pressures up to 700 bars), were plotted as logη vs 1/h, the latter computed for T and P at which η was measured. In previous works, such a plot for solvents and silicone oils resulted in a “master curve” for the liquid, in a wide range of T and P. However, for molten polymers, no superposition of data onto a “master curve” could be found. The superposition could be obtained allowing the characteristic pressure reducing parameter, P*, to vary. The necessity for using a “rheological” characteristic pressure reducing parameter, P*R = κP*, with κ = 1 to 2.1 indicates that the free volume parameter extracted from the thermodynamic equilibrium data may not fully describe the dynamic behavior. After eliminating possibility of other sources for the deviation, the most likely culprit seems to be the presence of structures in polymer melts at temperatures above the glass transition, T g. For example, it was observed that for amorphous polymers at T ≅ 1.52T g the factor κ = 1, and the deviation vanish.  相似文献   

20.
Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich (r = 1.61) aluminium–air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium–air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects. This paper is based on work that was presented at the 21st International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitiers, France, July 23–27, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号