首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm2 s(-1) V(-1) at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed.  相似文献   

2.
A novel monolithic silica column with zwitterionic stationary phase was prepared by in-situ covalent attachment of phenylalanine to a 3-glycidoxypropyltriethoxysilane-modified silica monolith. Due to the zwitterionic nature of the resulting stationary phase, the density and sign of the net surface charge, and accordingly the direction and magnitude of electroosmotic flow in this column during capillary electrochromatography could be manipulated by adjusting the pH values of the mobile phase. CEC separations of various acidic and basic compounds were performed on the prepared column in anodic and weakly cathodic EOF modes, respectively. The peak tailing of basic compounds in CEC on a silica column could be alleviated at optimized buffer compositions. Besides the electrophoretic mechanism and weak hydrophobic interaction, weak cation- and anion-exchange interactions are also involved in the separations of acids and bases, respectively, on the zwitterionic column.  相似文献   

3.
The application of indirect spectrophotometric detection was investigated for a capillary electrochromatographic system in which an anion-exchange stationary phase (in the form of aminated latex particles) was coated onto the wall of a fused-silica capillary. The study has focused on the choice of the type and concentration of the absorbing coion (probe) added to the background electrolyte and the role of this species in manipulating the ion-exchange contributions to the separation with a view to controlling the selectivity of the separation. Common inorganic anions were used as analytes and nitrate, p-toluenesulfonate, nicotinate, and chromate were investigated as probes. It was found that most of these probes produced only a limited range of separation selectivities when their concentration was varied over the practically accessible range. p-Toluenesulfonate provided the greatest variation in selectivity, but peak distortion due to electromigration dispersion was evident for the faster ions. When variation of the separation selectivity - from predominantly electrophoretic in nature to predominantly ion-exchange in nature - was desired, this was best achieved by varying the type of probe rather than its concentration. For example, the nitrate probe provided predominantly electrophoretic separations with good peak shapes and high efficiencies. A comprehensive list of probes, ranked in order of ion-exchange selectivity coefficients determined by ion chromatography, was compiled and this proved to be a useful tool to assist in the selection of a probe for a desired separation selectivity. The limits of detection for the analytes and probes studied ranged from 20-55 micromol for the chromate system to 230-600 micromol for the nicotinate system, with nitrate and p-toluenesulfonate giving intermediate values.  相似文献   

4.
A theoretical model to explain the observed mobility of inorganic anions in capillary electrochromatography (CEC) using ion-exchange (IE) stationary phases has been derived. The model divides contributions to the observed mobility of an analyte ion into capillary electrophoretic (CE) and IE components. The CE component includes the influence of varying the ionic strength of the background electrolyte on the electrophoretic mobility of the analyte, while the IE component accounts for the variation in retention of the analyte ion caused by changing the composition of the background electrolyte. The model was verified using a mixture of UV-absorbing inorganic ions in electrolytes of differing eluotropic strength in both packed and open-tubular CEC systems, with excellent agreement (r2 > 0.98) for both systems. Values of constants in the model equation determined by nonlinear regression were used to estimate the relative strengths of the interactions of different analytes with the stationary phase and these were found to agree well with elution orders observed in conventional IE chromatography.  相似文献   

5.
An experimental study of parameters influencing peak shapes in ion-exchange open tubular (OT) capillary electrochromatography (CEC) was conducted using adsorbed quaternary aminated latex particles as the stationary phase. The combination of separation mechanisms from both capillary electrophoresis and ion-exchange chromatography results in peak broadening in OT-CEC arising from both these techniques. The sources of peak broadening that were considered included the relative electrophoretic mobilities of the eluent co-ion and analyte, and resistance to mass transfer in both the mobile and stationary phases. The parameters investigated were the mobility of the eluent co-ion, column diameter, separation temperature and secondary interactions between the analyte and the stationary phase. The electromigration dispersion was found to influence peak shapes to a minor extent, indicating that chromatographic retention was the dominant source of dispersion. Improving the resistance to mass transfer in the mobile phase by decreasing the capillary diameter improved peak shapes, with symmetrical peaks being obtained in a 25 microm I.D. column. However, an increase in temperature from 25 degrees C to 55 degrees C failed to show any significant improvement. The addition of p-cyanophenol to the mobile phase to suppress secondary interactions with the stationary phase did not result in the expected improvement in efficiency.  相似文献   

6.
Porous zirconia monolith (ZM) modified with cellulose 3,5-dimethylphenylcarbamate (CDMPC) was used as chiral stationary phase to separate basic chiral compounds in capillary electrochromatography. The electroosmotic flow behavior of bare and CDMPC-modified zirconia monolithic (CDMPC-ZM) column was studied in ACN/phosphate buffer eluents of pH ranging from 2 to 12. The CDMPC-ZM column was evaluated by investigating the influences of pH, the type and composition of organic modifier of the eluent on enantioseparation. CEC separations at pH 9 provided the best resolutions for the analytes studied, which are better than those observed on CDMPC-modified silica monolithic columns under similar chromatographic conditions. No appreciable decline in retention and resolution factors after over 200 injections, and run-to-run and day-to-day repeatabilities of the column of less than 3% indicate the stability of the zirconia monolithic column in basic media.  相似文献   

7.
Summary Capillary electrochromatography (CEC) is classed as a hybrid technique between CE and HPLC and it combines the advantages of both these techniques. However, in some cases the disadvantages are also brought to light and some of these are difficult to resolve. For example the analysis of basic compounds using CEC. The problems of tailing peaks during HPLC analysis of basic compounds was resolved by end capping the residual silanol groups, but in CEC these are the groups that generate the electroosmotic flow. The analysis of basic compounds is crucial within the pharmaceutical industry where a high percentage of the drug actives are basic. Specially designed Continuous Beds stationary phases (CB) can mean that each application can have a specific stationary phase. In order to overcome the problem associated with the analysis of basic compounds using electrochromatography, we have designed a CB stationary phase with a positive charge, which could be operated using negative voltage. The resulting chromatography showed almost gaussian peaks for bases like nortriptyline which tail significantly using stationary phase typically used in CEC.  相似文献   

8.
The feasibility of using capillary columns equipped with silica frits and packed with a polymer-based anion exchanger (Dionex AS9-HC) for CEC separations of inorganic anions has been investigated. Experiments using a conventional 25 cm packed bed, and mobile phase flow that is a combination of hydrodynamic and electroosmotic flow were used to demonstrate that by varying the applied voltage (electrophoresis component) or the concentration of the competing ion in the mobile phase (ion-exchange component), considerable changes in the separation selectivity could be obtained. Using an artificial neural network, this separation system was modelled and the results obtained used to determine the optimum conditions (9 mM perchlorate and −10 kV) for the separation of eight inorganic anions. When a short (8 cm) packed bed was used, with detection immediately following the packed section, the separation of eight test analytes in under 2.2 min was possible using pressure-driven flow and a simple step voltage gradient. A more rapid separation of these analytes was obtained by only applying high voltage (−30 kV), where many of the same analytes were separated in less than 20 s and with a different separation selectivity to that obtained in conventional ion-exchange or capillary electrophoresis separations.  相似文献   

9.
The separation of basic solutes at low pH by capillary electrochromatography (CEC) has been investigated. The feasibility of separation of basic solutes by CEC was demonstrated. Influence of operational parameters, solvent composition, pH, temperature on retention and selectivity of the separation of a mixture of basic, neutral and acidic drug standards has been investigated. The observed elution behavior has been modeled to account for both chromatographic retention and differential electrophoretic mobility of the solutes. This model was verified experimentally. It is demonstrated in this work that the elution window of solutes in reversed-phase CEC is expanded to range from -1 to infinity.  相似文献   

10.
Capillary electrochromatography (CEC) shows promising results in the separation of basic drugs. Traditional reversed-phase systems, with or without amine additives to the mobile phase to improve peak shapes, are the most commonly employed. Alternative useful stationary phases, such as strong cation exchangers and polymer-based continuous beds, are also discussed, as are methods to improve sensitivity by sample preconcentration. So far, studies performed on CEC have mainly been fundamental, but the technique is rapidly maturing and has many potential applications in the pharmaceutical field.  相似文献   

11.
Chen Y  Lu X  Han Z  Qi L  Wang MX  Yu X  Yang G  Mao L  Ma H 《Electrophoresis》2005,26(4-5):833-840
A low-cost tunable chiral ion-exchange capillary electrochromatographic method has been developed for the separation of arylglycine amide racemic mixtures with dextran sulfate (DS) as an anionic and chiral pseudostationary phase and Tris-tartrate as a buffer system. The concentrations of DS and Tris had opposite influences on retention and resolution and could serve as ideal factors to finely tune the running speed and chiral resolution. Tartrate and pH largely impact the separation but pH should be confined within 3.0-5.5, only suitable for coarse tuning, while tartrate was preserved as the key buffering reagent, normally maintained at 40 mmol/L. With a working system composed of 0.1-1.0% DS, 20-60 mmol/L Tris, and 40 mmol/L tartrate at pH 3.50-4.50, the enantioresolution of arylglycine amides was shown to be dependent on their chemical structure: The chiral resolution increased when the hydrogen at the alpha-amino group or at the p-position of phenyl ring was replaced by other larger group(s) but the resolution decreased when the group at the o- or m-site on the phenyl ring was enlarged. Further, the electronegative substitute of -Cl had larger resolution increment than methyl or methoxy at the position p- of phenyl ring but much lower increment at position m-. It is possible to well explain the resolution variation phenomenon by considering the group resistance and the variation of hydrogen-bonds formed inside the amino amides and between the solutes and DS. The amido group was shown irreplaceable to have chiral resolution with DS alone as an ionic and chiral pseudostationary phase.  相似文献   

12.
Capillary electrophoretic separations have been investigated for six controlled narcotic analgesic compounds having related structures. Owing to the similar charge-to-mass ratios of these compounds, capillary zone electrophoresis failed to provide a satisfactory separation, whereas a baseline-resolved separation was achieved in 10 min using micellar electrokinetic chromatography. Column efficiencies of 40,000-150,000 plates/m were obtained with a 50 cm long, 50 microm inner diameter (ID) capillary using 50 mM sodium dodecyl sulfate (SDS) in a 50 mM borate solution containing 12% isopropanol. In contrast, separation of this mixture by capillary electrochromatography proved to be significantly superior. The capillary was 15 cm long, with an ID of 75 microm, and was packed with 1.5 microm nonporous octadecyl silica (ODS) particles. The mobile phase consisted of 80% 10 mM tris(hydroxymethyl)aminomethane (Tris) and 20% acetonitrile, and contained 5 mM SDS. A complete separation was obtained in 2.5 min with an efficiency of 250,000-500,000 plates/m.  相似文献   

13.
Wu R  Zou H  Ye M  Lei Z  Ni J 《Electrophoresis》2001,22(3):544-551
A mode of capillary electrochromatography (CEC), based on the dynamical adsorption of surfactants on the uncharged monolithic stationary phases has been developed. The monolithic stationary phase, obtained by the in situ polymerization of butyl methacrylate with ethylene dimethacrylate, was dynamically modified with an ionic surfactant such as the long-chain quaternary ammonium salt of cetyltrimethylammonium bromide (CTAB) and long-chain sodium sulfate of sodium dodecyl sulfate (SDS). The ionic surfactant was adsorbed on the surface of polymeric monolith by hydrophobic interaction, and the ionic groups used to generate the electroosmotic flow (EOF). The electroosmotic mobility through these capillary columns increased with increasing the content of ionic surfactants in the mobile phase. In this way, the synthesis of the monolithic stationary phase with binary monomers can be controlled more easily than that with ternary monomers, one of which should be an ionic monomer to generate EOF. Furthermore, it is more convenient to change the direction and magnitude of EOF by changing the concentration of cationic or anionic surfactants in this system. An efficiency of monolithic capillary columns with more than 140000 plates per meter for neutral compounds has been obtained, and the relative standard deviations observed for to and retention factors of neutral solutes were about 0.22% and less than 0.56% for ten consecutive runs, respectively. Effects of mobile phase composition on the EOF of the column and the retention values of the neutral solutes were investigated. Simultaneous separation of basic, neutral and acidic compounds has been achieved.  相似文献   

14.
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.  相似文献   

15.
Ye M  Zou H  Liu Z  Ni J 《Journal of chromatography. A》2000,887(1-2):223-231
Separation of the acidic compounds in the ion-exchange capillary electrochromatography (IE-CEC) with strong anion-exchange packing as the stationary phase was studied. It was observed that the electroosmotic flow (EOF) in strong anion-exchange CEC moderately changed with increase of the eluent ionic strength and decrease of the eluent pH, but the acetonitrile concentration in the eluent had almost no effect on the EOF. The EOF in strong anion-exchange CEC with eluent of low pH value was much larger than that in RP-CEC with Spherisorb-ODS as the stationary phase. The retention of acidic compounds on the strong anion-exchange packing was relatively weak due to only partial ionization of them, and both chromatographic and electrophoretic processes contributed to separation. It was observed that the retention values of acidic compounds decreased with the increase of phosphate buffer and acetonitrile concentration in the eluent as well as the decrease of the applied voltage, and even the acidic compounds could elute before the void time. These factors also made an important contribution to the separation selectivity for tested acidic compounds, which could be separated rapidly with high column efficiency of more than 220000 plates/m under the optimized separation conditions.  相似文献   

16.
Hilmi A  Luong JH 《Electrophoresis》2000,21(7):1395-1404
Amperometric detection at a bare gold electrode has been in-line coupled with capillary electrochromatography (CEC) for analysis of nitroaromatic and nitroamine explosives in contaminated soils and ground water. The CEC column packed with 3 microm C18 particles performed best using a mobile phase containing 70-80% methanol, 30 or 20% water, 5 mM sodium dodecyl sulfate (SDS) and 10mM 2-(N-morpholino)ethanesulfonic acid (MES). In contrast, the separation column packed with 1.5 km C18 particles exhibited the best separation when only 30% methanol was added to a mobile phase containing 70% water, 7 mM SDS, and 10 mM MES. The detection, based on electrochemical reduction of the explosives (-0.7 or -1 V vs. Ag/AgCl, depending upon the level of methanol in the mobile phase), was compatible with such mobile phases. The detection limits for 13 explosives ranged from 100 to 200 ppb, i.e., about twofold better than those obtained with electrokinetic chromatography (EKC)/amperometric detection. From an operational viewpoint, exhaustive column conditioning was a prerequisite and care should be taken to prevent bubble formation and current breakdown during the course of separation. The CEC column equipped with amperometric detection successfully measured explosives in ground water and extracts prepared from contaminated soils and the results obtained agreed well with those of the U.S. Environmental protection Agency (EPA) method.  相似文献   

17.
Wu R  Zou H  Fu H  Jin W  Ye M 《Electrophoresis》2002,23(9):1239-1245
The mixed mode of reversed phase (RP) and strong cation-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280,000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for t(0) and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.  相似文献   

18.
Fu H  Jin W  Xiao H  Xie C  Guo B  Zou H 《Electrophoresis》2004,25(4-5):600-606
Hydrophilic interaction capillary electrochromatography (HI-CEC) for the determination of basic pharmaceuticals spiked in human serum is described. The organic modifier content, ionic strength, and pH value of the mobile phase as well as the applied voltage are optimized for separation and elution of these drug analytes. Excellent separation was achieved for drugs using a mobile phase composition of 80% v/v acetonitrile in 100 mM triethylamine phosphate (TEAP) buffer at pH 2.8 with column efficiencies for analytes more than 200,000 plates/m. The samples of human serum spiked with basic drugs were directly injected after a simple acetonitrile treatment. The linear range and reproducibility of these basic drugs using an external and internal standard method were compared. As a result, the reproducibility could be greatly improved by using the internal standard method. Good calibration curves with regression coefficients more than 0.998 in the range of 5-160 microg/mL were observed with the internal standard method. The limits of quantitation, based on standards with acceptable relative standard deviations (RSDs), were below 5 microg/mL. The intra- and inter-day precisions, determined as RSDs, were less than 4.57%.  相似文献   

19.
This work describes the separation of acidic, basic and neutral organic compounds as well as inorganic anions in a single run by capillary electrochromatography employing a stationary phase which exhibits both strong anion-exchange and reversed-phase chromatographic characteristics. The positive surface charge of this stationary phase provided a substantial anodic electroosmotic flow. The analytes were separated by a mixed-mode mechanism which comprised chromatographic interactions (hydrophobic interactions, ion-exchange) as well as electrophoretic migration. The influence of ion-exchange and hydrophobic interactions on the retention/migration of the analytes could be manipulated by varying the concentration of a competing ion and/or the amount of organic modifier present in the background electrolyte. Additionally the effects of pH changes on both the chromatographic interactions as well as the electrophoretic migration of the analytes were investigated.  相似文献   

20.
Highly efficient capillary electrochromatographic separations of cardiac glycosides and other steroids are presented. Employing butyl-derivatized silica particles as stationary phase resulted in a nearly three times faster electroosmotic flow (EOF) compared to capillary electrochromatography (CEC) with octadecyl silica particles. On-column focusing with a preconcentration factor of 180 was performed and separation efficiencies of up to 240,000 plates per meter were obtained. Using label-free standard UV absorbance, detection limits of 10-80 nM were reached for all steroids tested. For screening of cardiac glycosides, e.g., digoxin and digitoxin in mixtures of steroids, CEC was combined with immunoaffinity extraction using immobilized polyclonal anti-digoxigenin antibodies and F(ab) fragments. Simply adding small amounts of antibody carrying particles to the samples and comparing chromatograms before and after antibody addition allowed screening for high affinity antigens in mixtures with moderate numbers of compounds. Under conditions of competing antigens, affinity fingerprints of immobilized anti-digoxigenin and anti-digitoxin antibodies were obtained, reflecting the cross-reactivity of eleven steroids. The method provides high selectivity due to the combination of bioaffinity interaction with highly efficient CEC separation and UV detection at several wavelengths in parallel. This selectivity was exploited for the detection of four cardiac glycosides in submicromolar concentrations in an untreated urine sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号