首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The provision of information to the public about current levels of the erythemally effective UV radiation is an important issue in health care. The quality of promoted values is therefore of special importance. The atmospheric parameter which affects the erythemally effective UV radiation under clear sky most is the total ozone content of the atmosphere. In this paper we examined the sensitivity of the erythemally effective irradiance and daily radiant exposure to the temporal variability of total ozone on time scales from 1 to 15 days. The results show that the sensitivity is highest for the first 24 h. Larger time scales do not exhibit a similar influence. Total ozone measurements of the previous day may already cause uncertainties higher than 0.5 UV index (UVI) independent of the geolocation. For comparison, a temporal persistence of 15 days may cause uncertainties of 1.2 UVI at 50°N, 1 UVI at 30°S and less than 1 UVI at the equator. The results of this study allow finding the necessary temporal resolution of total ozone values when a certain accuracy for the UVI or for the purpose of sun protection is required. The results are compared with those of two preceding studies where we quantified the influence of measurement uncertainties and spatial total ozone variability to the erythemally effective irradiance at noon and to the daily dose. We conclude that temporal variability of total ozone is the most critical issue, but also measurement uncertainties do have a noticeable influence on the erythemally effective radiation.  相似文献   

2.
According to the World Health Organization and partner organizations, no protection against ultraviolet (UV) radiation is required on days with “low” values (i.e., values <3) of the Global Solar Ultraviolet Index (UVI). Erythemal irradiance (Eer) data of such days were analyzed to evaluate this claim. Measurements from 9 stations of the German solar UV monitoring network from 2007 to 2016 yielded 14,431 daily Eer time series of low UVI days. Erythemal doses for certain fixed time intervals—acquired from measurements on horizontal planes—were compared with the average minimal erythemal dose (MED) of skin phototype II. Doses from days with rounded UVI values of 0 were insufficient to induce erythema and even on days with rounded UVI values of 1 doses exceeding 1 MED of skin type II could only be acquired under very specific circumstances of prolonged exposure. Conversely, sun exposure on days with rounded UVI values of 2 can indeed provide doses sufficient to induce erythema in skin type II after two hours around noon. In conclusion, our analyses do not support the claim of harmlessness currently associated with the entire low UVI exposure category in public guidance on interpretation of the UVI.  相似文献   

3.
The 2002 revision of the UV index (UVI) issued by the World Health Organisation (WHO), the World Meteorological Office (WMO), the United Nations Environment Programme (UNEP) and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) (World Health Organization [2002] Global Solar UV Index: A Practical Guide. WHO, Geneva) was motivated by the need to further standardize the use and presentation of the UVI. Awareness of the hazards of solar UV radiation (UVR) is generally high in Australia, but more effective use of the UVI will assist in promoting further changes to the population's sun exposure behavior. UVI levels for a number of cities around Australia as measured by the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), covering the time period 1996-2000, are presented. Also shown are UVI forecasts from the Australian Bureau of Meteorology (BOM). Agreement between the BOM data and the measurements varies depending on the location but is within 2 UVI units approximately 75% of the time. UVI levels are supplied to the media, and in summer values in excess of 12-14 are regularly recorded, although the more northerly locations occasionally reach 16 and 17. The factors affecting the solar UVR environment and the measured UVI are also discussed and compared against measurements from the UK.  相似文献   

4.
Cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover and sunny conditions (from sky images) as well as of solar zenith angle (SZA) are assessed. These analyses are undertaken for a southern‐hemisphere mid‐latitude site where a 10‐years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (<60%) and large SZA (>60°). Similarly, local short‐time enhancement effects are stronger for TR than for UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: (1) from sky imaging cloud cover and sunny conditions, and (2) from TR measurements. Both methods may be used in practical applications, although Method 2 shows overall the best performance, as TR allows considering cloud optical properties. The mean absolute (relative) differences of Method 2 estimations with respect to measured values are 0.17 UVI units (6.7%, for 1 min data) and 0.79 Standard Erythemal Dose (SED) units (3.9%, for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units (15%) and 1.6 SED (8.0%).  相似文献   

5.
Measurements were conducted at San Ya, China (18.4°N, 109.7°E, altitude 18 m) to investigate the diurnal variation of ocular exposure to ultraviolet (UV) radiation. The experimental apparatus was composed of a manikin and a dual-detector spectrometer to simultaneously measure ocular and ambient UV data. The experimental apparatus was rotated clockwise to simulate three different types of exposure. When the manikin was facing into the sun, the ocular exposure to UV radiation on a summer day was bimodally distributed. The maximum ocular UV irradiance occurred at solar elevations of around 40° and 50° for UVA and UVB respectively. The spectral irradiances were measured at specific wavelength to obtain the ocular biologically effective UV (UV(BE) ) irradiances for photokeratitis, photoconjunctivitis and cataract, and the UV index (UVI) was calculated at the same time point for comparison. When the manikin faced the sun, the maximal ocular UV(BE) irradiance values were obtained at the solar elevation where the UVI value was 8. The results of this study showed that protection against ocular overexposure during outdoor activities should be taken not only at noon but also at other times.  相似文献   

6.
A number of studies published in the scientific literature have shown the relationship between sun exposure and nonmelanoma skin cancer (NMSC) and vitamin D synthesis. However, the paucity of medical data, particularly in developing countries, hampers a global assessment of the impact of sun exposure on NMSC and vitamin D. To improve knowledge on this subject, this paper presents UV index (UVI) measurements performed in São Paulo City (SPC) in the period 2005–2008. It was found that 65% of the UVI measured 2 h around local noon during the summer show very high (8 < UVI < 10) and extreme (UVI > 11) levels according to the World Health Organization (WHO) classification. During the winter, 40% of the measurements around noontime show high or very high levels. In spite of worrisome recent statistics from SPC, showing that NMSCs make up about 28% of over a million of new cases of cancer in 2008, sun protection is not considered a real problem in these urban areas. UV measurements also show that every month of the year UV levels are high enough to ensure vitamin D production in human skin from incidental sun exposure.  相似文献   

7.
This paper focuses on the estimation of the UV Index (UVI) for all sky conditions using a simple analytical parameterization involving three independent variables: the solar zenith angle, the total ozone column and the clearness index. Measurements of the UVI made at Badajoz and Cáceres (Southwestern Spain) from January 2006 to December 2007 are used to estimate optimal fitting parameters for the model formula, while measurements from January to December 2008 are used to show that the formula-based estimations have mean absolute errors lower than 6% and R(2) ca 0.99.  相似文献   

8.
Analytic formula for the clear-sky UV index   总被引:1,自引:0,他引:1  
An approximate formula for the UV Index (UVI) under cloud-free, unpolluted, low surface albedo conditions is: UVI approximately 12.5mu(o)(2.42)(Omega/300)(-1.23) where mu(o) is the cosine of the solar zenith angle and Omega is the total vertical ozone column (in Dobson Units, DU). The dependence on mu(o) and Omega is based on a simple physical model of biologically weighted atmospheric transmission in the UV-B and UV-A spectral bands, with coefficients tuned to a detailed radiative transfer model, and is accurate to 10% or better over 0-60 degrees and 200-400 DU. Other factors (clouds, haze, ground, etc.) mostly conserve this dependence and scale simply.  相似文献   

9.
In this study, ocular biologically effective exposure to solar ultraviolet radiation (UVBE) is investigated with six kinds of sun protective measures (spectacle lenses, sunglasses, cap, bonnet, straw hat and under parasol). Ocular UV exposure measurements were performed on manikins during the summer period in Shenyang city (41.64° N, 123.50° E, 66 m a.s.l.), China. The measurements include the ocular UV exposure of an unprotected eye and the ambient UV as a control concurrently. Based on the relative spectral weighting factors of the International Commission on Non‐Ionizing Radiation Protection (ICNIRP), the ocular biologically effective UV is calculated and compared with the 8‐h exposure limits of ICNIRP (30 J m?2). The UV index (UVI) of the measurement days is 0–8, and the 8‐h (8:00–16:00 China Standard Time, CST) cumulated UVBE of the unprotected eye is 452.0 J m?2. The 8‐h cumulated UVBE of the eye with spectacle lenses, sunglasses, cap, bonnet, straw hat and under parasol are 364.2, 69.1, 51.4, 49.0, 56.8 and 110.2 J m?2, respectively. Importantly, it should be noted that the eye could be exposed to risk despite protective measures. The 8‐h cumulated UVBE of the eye with protection is ca 1.6–15.1 times the exposure limit, respectively. As indicated in the present study, during summer months, high exposure to the sun for more than 30 min without eye protection and more than 1 h with eye protection is not advisable. The protection measures could effectively reduce the UVBE reaching the eye, yet there is still a high degree of risk when compared with the ICNIRP 8‐h exposure limits.  相似文献   

10.
In this study the sensitivity of the erythemally effective radiation to uncertainties in operationally measured total ozone content of the atmosphere (TOC) was estimated. For this, daily operational TOC measurements from different instruments were applied covering the period from 1997 to 1999. Measurements were gained from space by Earth Probe Satellite, Earth Remote Sensing satellite/Global Ozone Monitoring Experiment and Operational Vertical Sounder and from the ground by Dobson and Brewer spectrophotometers for the locations of Hradec Kralove (Czech Republic, 50 degrees N), Nairobi (Kenya, 1 degrees S) and Springbok (Republic of South Africa, 30 degrees S). The values were used as input parameter to model calculations of erythemally effective irradiance and daily radiant exposure. The differences due to the use of TOC from different sources were analyzed with respect to the Ultraviolet Index (UVI). The UVI was introduced as a tool for sun protection and health care. Therefore, it is of special importance to know the restriction of accuracy. As a tool of health care, the maximum uncertainties are of interest and are described in using the 95%-percentile and the maximum differences. This study shows that differences, i.e. uncertainties (95%-percentile) are in the order of 1 UVI. Independently on the location, however, extreme differences may overstep 3 UVI. For the daily dose the 95%-percentile is around 7.5 UVI hours (UVIh) but differences higher than 20 UVIh were also found.  相似文献   

11.
This study relates regional and seasonal UV index (UVI) variations, number of skin cancer cases and population skin-color distribution in Brazil. UVI calculations were performed using the UV Global Atmospheric Model (UVGAME), whose characteristics and validations are provided in thiis article. Health and racial data sets are based on the health and census data collected by Brazilian governmental agencies in the past. The discussion covers cultural customs and details of health and educational campaigns in Brazil. Despite lower UV levels in the South and Southeast regions, the results show a number of nonmelanoma skin cancer (NMSC) cases regions, where the white population is predominant. In general, in the southern regions about 50 new NMSC cases per 100000 inhabitants have been diagnosed each year. These rates decrease almost 40% in the Central-North regions and more than 80% in Northeast region, where miscegenation is common. In addition, the UVI evaluation is extended to other South American sites with singular characteristics, e.g. populous cities located in high altitudes or those affected by the Antarctic ozone hole in the extreme south of the continent.  相似文献   

12.
Polymer/inorganic hybrid ultra violet (UV) photovoltaic device is fabricated by using poly(N-vinyl-carbazole) (PVK) and zinc sulfide (ZnS). The device shows promising photovoltaic characteristics with a high open-circuit voltage of 1.65 V, and a short-circuit current of 46.8 μA/cm2 under the illumination of 340 nm UV light with the intensity of 14 mW/cm2. Besides, much correlative photocurrent spectra of the device under forward and reverse applied bias manifest the transport mechanism of charge carriers in PVK/ZnS bilayer systems.  相似文献   

13.
UVexposure is considered to be one of the most important risk factors in skin cancers, mainly in outdoor occupational activities. Outdoor workers receive regular and significant solar UV erythemal radiation (UVER). To quantify the UVER exposure of certain groups of workers, dosimeters are used to measure the biologically effective UV radiation received in the course of their daily work. Two groups of outdoor workers, composed of gardeners and lifeguards, were measured for UVER exposure using sensitive spore-film filter-type personal dosimeters (Viospor). The study took place in Valencia, Spain, in June and July 2008, and involved one group of four gardeners and another of five beach lifeguards for a period of 4 and 6 days, respectively. The gardeners' mean UV exposure was 4.13 ± 0.60 SED day−1, where 1 SED is defined as effective 100 J m−2 when weighted with the CIE erythemal response function, whereas the lifeguards received 11.43 ± 2.15 SED day−1. The mean exposure ratio (ER) relative to ambient of gardeners was 0.09 ± 0.01 and for lifeguards was 0.27 ± 0.05. ER is defined as the ratio between the personal dose on a selected anatomical site and the corresponding ambient dose on a horizontal plane during the same exposure period. The lifeguards received the highest UVER exposure, although both groups had measured UVER exposure in excess of occupational guidelines, indicating that protective measures are necessary.  相似文献   

14.
A worldwide forecast of the erythemally effective ultraviolet (UV) radiation is presented. The forecast was established to inform the public about the expected amount of erythemally effective UV radiation for the next day. Besides the irradiance, the daily dose is forecasted to enable people to choose the appropriate sun protection tools. Following the UV Index as the measure of global erythemally effective irradiance, the daily dose is expressed in units of UV Index hours. In this study, we have validated the model and the forecast against measurements from broadband UV radiometers of the Robertson-Berger type. The measurements were made at four continents ranging from the northern polar circle (67.4 degrees N) to the Antarctic coast (61.1 degrees S). As additional quality criteria the frequency of underestimation was taken into account because the forecast is a tool of radiation protection and made to avoid overexposure. A value closer than one minimal erythemal dose for the most sensitive skin type 1 to the observed value was counted as hit and greater deviations as underestimation or overestimation. The Austrian forecast model underestimates the daily dose in 3.7% of all cases, whereas 1.7% results from the model and 2.0% from the assumed total ozone content. The hit rate could be found in the order of 40%.  相似文献   

15.
Cells and tissues can be protected against a potentially lethal stress by first exposing them to a brief dose of the same or different stress. This "pre-conditioning" phenomenon has been documented in many models of protection against oxidative stress, including ischemia/reperfusion and ultraviolet (UV) light exposure. Stimuli which induce this protective response include heat, chemicals, brief ischemia, and electromagnetic (EM) field exposures. We report here that constant mechanical vibration pre-conditions chick embryos, protecting them during subsequent stress from hypoxia or UV light exposure. Continuously mechanically vibrated embryos (60 Hz, 1 g (32 ft/s2), 20 min) exhibited nearly double the survival (67.5%, P < 0.001) after subsequent hypoxia as compared to non-vibrated controls (37.6%). As a second set of experiments, embryos were vibrated and then exposed to UV light stress. Those embryos that were vibrated prior to UV had nearly double the survival 3 h after UV exposure (66%, P < 0.001) as compared to controls (35%). The degree of protection, however, was dependent on the constancy of the vibration amplitude. When vibration was turned on and off at 1-s intervals throughout exposure, no increase in hypoxia protection was noted. For 50 s on/off vibration intervals, however, hypoxia protection comparable to continuous vibration was obtained. In contrast, random, inconstant mechanical vibration did not induce protection against subsequent UV exposure. These data suggest that to be an effective pre-conditioning agent, mechanical vibration must have a degree of temporally constancy (on/off intervals of greater than 1 s). Further experiments in both models (hypoxia and UV) indicated an interaction between vibration and EM field-induced protection. Vibration-induced hypoxia protection was inhibited by superposition of a random EM noise field (previously shown to inhibit EM field-induced protection). In addition, EM field-induced UV protection was inhibited by the superposition of random mechanical vibration. Thus, the superposition of either vibrational or EM noise during pre-conditioning virtually eliminated protection against hypoxia and UV. This link between EM field exposures and mechanical vibration is consistent with the hypothesis that cells sense these stimuli via a similar mechanism involving counter ion displacement.  相似文献   

16.
Measurement of in vivo sunscreen immune protection factors in humans   总被引:2,自引:0,他引:2  
This study investigates the level of protection provided by sunscreens against solar-simulated UV radiation-induced immunosuppression in humans. The in vivo immune protection factors (IPF) of two broad-spectrum sunscreens were determined by assessing their ability to prevent UV-induced suppression of nickel contact hypersensitivity (CHS) in 15 nickel-allergic volunteers. Each volunteer was irradiated on unprotected skin of the back with different doses of UV daily for 4 days. Multiples of these UV doses were concurrently delivered to sunscreen-treated sites on the contralateral back. Nickel patches were then applied to both irradiated sites and adjacent, unirradiated control sites. Nickel-induced erythema at each site was measured 72 h later with a reflectance spectrometer. Comparison of the nickel reactions of irradiated and unirradiated skin revealed linear UV dose-responses for immunosuppression in both unprotected and sunscreen-treated skin. The minimum level of immunosuppression that can be reliably detected with this method is 20%. Therefore, the UV dose that reduces mean nickel CHS by 20% is the minimal immune suppression dose (MISD). Sunscreen IPF were determined by dividing the mean MISD of sunscreen-treated skin by that of unprotected skin. The sunscreens, with sun protection factors of 9 and 24, had IPF of 6.5 and > 25, respectively.  相似文献   

17.
In recent years, there has been a substantial increase in attempts to model the flux of ultraviolet radiation (UV). UV irradiance at surface level is a result of the combined effects of solar zenith angle, surface elevation, cloud cover, aerosol load and optical properties, surface albedo and the vertical profile of ozone. In this study, we present the development of an artificial neural network (ANN) model that can be used to estimate solar UV irradiance on the basis of optical air mass, ozone columnar content, latitude, horizontal visibility data and cloud information such as type, coverage and height. ANN are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with nonlinear problems and, once trained, can perform prediction and generalization at high speed. In this study, a multilayer perceptron network (MLP) consisting of an input layer, an output layer and one hidden layer was used. Training of the neural network was done using the Bayesian regulation back propagation algorithm. The study was developed using data from three stations on the Iberian Peninsula: Madrid and Murcia during the period 2000-2001 and Zaragoza in 2001. To train and validate the MPL neural networks, independent subsets of data were extracted from the complete database at each station. The results suggest that a MLP neural network using optical air mass, ozone columnar content, latitude and total cloud coverage provides the best estimates, with mean bias deviation and root mean square deviation of -0.1% and 18.0%, 1.6% and 19.6%, 0.1% and 14.6% at Madrid, Murcia and Zaragoza, respectively. Despite the dependence of the cloud radiative effect on cloud type, the use of additional information such as cloud type or cloud elevation did not improve these results. The performance of the developed ANN has been checked regarding its ability to estimate the UV index (UVI); results indicate that in more than 95% of the cases, the difference between estimated and measured values does not exceed one unit of UVI.  相似文献   

18.
The solar erythemal UV irradiances through human hair and the protection from UV provided by human head hair have been investigated for a solar zenith angle (SZA) range of 17–51° for the conditions of a head upright in full sun, a head upright in shade and a head in full sun tilted toward the sun. The two hair lengths investigated were 49.1 ± 7.1 mm for the short type and 109.5 ± 5.5 mm for the long type. For the head upright in full sun, the irradiances through the hair ranged from 0.75 to 1.4 SED h−1 for SZA <25° and <0.6 SED h−1 in shade. The ultraviolet protection factor (UPF) ranged from approximately 5 to 17 in full sun, with the UPF increasing with higher SZA. The longer hair provided a lower UPF than the shorter hair and for the head oriented toward the sun, there was a marginally lower UPF than for the upright head. This research shows that the UV exposure limits to the scalp through hair can be exceeded within short timeframes and provides important information to assist employers to comply with Workplace Health and Safety legislation.  相似文献   

19.
A UV indicator/dosimeter based on benzyl viologen (BV2+) encapsulated in polyvinyl alcohol (PVA) is described. Upon exposure to UV light, the BV2+/PVA film turns a striking purple colour due to the formation of the cation radical, BV•+. The usual oxygen sensitivity of BV•+ is significantly reduced due to the very low oxygen permeability of the encapsulating polymer, PVA. Exposure of a typical BV2+/PVA film, for a set amount of time, to UVB light with different UV indices produces different levels of BV•+, as measured by the absorbance of the film at 550 nm. A plot of the change in absorbance at this wavelength, ΔAbs(550), as a function of UV index, UVI, produces a linear calibration curve which allows the film to be used as a UVB indicator, and a similar procedure could be employed to allow it to be used as a solar UVI indicator. A typical BV2+/PVA film generates a significant, semi-permanent (stable for >24 h) saturated purple colour (absorbance ~0.8–0.9) upon exposure to sunlight equivalent to a minimal erythemal dose associated with Caucasian skin, i.e. skin type II. The current drawbacks of the film and the possible future use of the BV2+/PVA film as a personal solar UV dosimeter for all skin types are briefly discussed.   相似文献   

20.
Abstract The total ozone column (TOC) is the most significant quantity for estimating the erythemally effective UV radiation under clear sky conditions. Uncertainties in TOC measurements and a limited spatial and temporal resolution therefore influence the quality of calculated erythemally effective radiation. The UV Index, the internationally accepted measure of the erythemally effective radiation, is used in public and the media to inform about current levels of UV radiation and builds the base for sun protection. Thus, the accuracy of the promoted values is essential. While in a preceding study we estimated the influence of measurement uncertainties, in this study we analyze the influence of spatial gaps and variability of TOC to the erythemally effective irradiance at noon and to the daily dose. The results allow defining the necessary spatial resolution of TOC values when a certain accuracy for the UV Index or for the purpose of sun protection is required. In case of the erythemally effective irradiance this study reveals that spatial gaps in TOC or the assumption of spatial invariability causes similar uncertainties independent of the geographic location. At higher latitudes the higher spatial variability of TOC counteracts the lower level of irradiance. For the daily dose gaps in TOC have an even higher impact at higher latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号