首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum(IV) halides formed complexes of the type PtL2X4 [L=1-vinyl imidazole (1,-VIm), 1-methylimidazole (1-MeIm), 1,2-dimethylimidazole (1,2-Me2Im), 1-vinyl-2-methylimidazole (1-V-2-MeIm), 2-methylimidazole (2-MeIm), 2-ethylimidazole (2-EtIm), 2-isopropylimidazole (2-i-PrIm), and 4-methylimidazole (4-MeIm); X=Cl, Br] in neutral aqueous solution. The 1-n-butylimidazole (1-n-BuIm) ligand yielded only (LH)2PtX6 compound in the same medium. The compounds were characterised by elemental analyses, IR, UV-VIS and 1HNMR spectra.  相似文献   

2.
Summary Compounds of the type PdL2X2 (L=1-methylimidazole, 1-vinylimidazole, 1-n-butylimidazole, 1,2-dimethylimidazole, 1-vinyl-2-methylimidazole, 1,2-dimethyl-5-nitroimidazole, 2-isopropyl-4(5)-nitroimidazole and 2-methyl-4(5)-nitro-imidazole; X=Cl or Br) are obtained by treating PdX2 (1 mole) with solutions of the ligands L (2 moles). An excess of L gives PdL4X2 complexes (L=1-methylimidazole, 1-vinylimidazole, 1,2-dimethylimidazole and 1-vinyl-2-methylimidazole). The compounds were characterized by chemical analyses, molar conductivity measurements and i.r. spectra.  相似文献   

3.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

4.
Summary Reaction of ruthenium(III) chloride with imidazole(Im) and different substituted imidazoles,viz. N-methylimidazole (N-MeIm), 2-methylimidazole(2-MeIm), 4-methylimidazole (4-MeIm),N-vinylimidazole(N-VIm), 2-methyl- 1-vinyl-imidazole(2-Me-1-VIm), 1,2-dimethylimidazole(1,2-Me,Im), 2-ethylimidazole(2-EtIm) and 2-ethyl-4(5)-methylimidazole (2-Et-4(5)-MeIm] yield products of the types [Ru2L4Cl6] · 2 H2O (L = N-VIm or 4-MeIm), [Ru2L4Cl6] · 4 H2O (L = Im or 2-Et-4(5)-MeIm), [Ru2L 3 (H2O)Cl6] (L =N-MeIm or 2-MeIm), [Ru2L 2 (H2O)2Cl6] (L = 1,2-Me2Im or 4-MeIm), [Ru(2-Me-1-VIm)3Cl3] · H2O and [Ru(2-EtIm)3(H2O)Cl2]. These compounds were characterised by elemental analyses, conductometric measurements, i.r. and electronic spectral analyses. Magnetic moments range from 1.01 to 1.9 B.M. The e.s.r. spectra and g values of some of the compounds are indicative of high distortion.  相似文献   

5.
Summary A series of cobalt(II), nickel(II) and copper(II) complexes of 2-picolinamineN-oxide, HA, has been prepared. Solids of formula [M(HA)3](BF4)2 (M=cobalt(II) or nickel(II); [Cu(HA)2]X2 (X=BF 4 , NO 3 ); [Co(HA)2X2] (X=Cl or Br); [Ni(HA)2Cl2] and [Cu(HA)X2] (X=Cl or Br] have been isolated and characterized by partial elemental analyses, molar conductivities, magnetic susceptibilities, DSC-TGA, and spectral methods. All complexes were found to be monomeric, and their spectral parameters are compared with those of the metal ion complexes ofN-alkyl-2-picolinamineN-oxides, 2-dialkylaminopyridineN-oxides and 2-picolinamine. The cobalt(II) and nickel(II) halide complexes spectrally show a mixture of octahedral and tetrahedral centres.  相似文献   

6.
Summary Metal ion complexes of 2-acetylpyridineS-methyldithiocarbazate, HNNS, have been prepared and spectrally characterised. Preparations in EtOH yield complexes in which the deprotonated ligand, NNS, is complexedvia its pyridyl nitrogen, azomethine nitrogen, and thione sulphur. The stoichiometries are: [M(NNS)2]X (M=Fe3+, Co3+ and X=ClO 4 , [FeCl4], BF 4 , 1/2 [CoCl4]2– and 1/2 [CoBr4]2–), [M(NNS)X] (M=Ni2+, Cu2+ and X=Cl, Br), [Cu(NNS)H2O]BF4 and Ni(HNNS)(NNS)F(EtOH)]BF4. The spectral (i.e., i.r., u.v.-vis.-n.i.r. and e.s.r.) and physical properties of these complexes are compared to those of theS-methyldithiocarbazates of 2-formylpyridine and 2-acetylpyridineN-oxide, as well as the related thiosemicarbazones prepared from 2-acetylpyridine. Thermal studies of the nickel(II) complexes indicate that the nature of thermal decomposition of coordinated NNS is different from that of HNNS.  相似文献   

7.
Spectral-kinetic luminescence characteristics of the complexes cis-[Ru(bpy)(dppe)X2], cis- [Ru(bpy)2(PPh3)X](BF4) and cis-[Ru(bpy)2X2] [bpy = 2,2'-bipyridyl, dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 is triphenylphosphine, X = NO2 - and CN-] in the ethanol-methanol 4:1 mixtures and adsorbed on the oxide SiO2 or porous polyacrylonitrile polymer surface were studied. Luminescence and luminescence exitation spectra were registered at 77 and 293 K in 230-750 nm range and the luminescence decay time was measured. Introduction of phosphine ligands to the ruthenium(II) bipyridyl complexes inner sphere leads to rise in singlet and triplet state energy at the charge transfer from Ru(II) to 2,2'-bipyridyl in the series [Ru(bpy)2X2] < Ru(bpy)2(PPh3)X](BF4) < [Ru(bpy)(dppe)X2]. The complex adsorption on SiO2 or polyacrylonitrile surface affects noticeably the luminescence spectro-kinetic characteristics.  相似文献   

8.
Summary [NiL2X2] (L =N,N-dimethyl-1,2-ethanediamine; X = Cl, CF3CO 2 , CC13CO 2 and CBr3CO 2 ), [NiL2C2O4] · H2O and [NiL2X2] · 2 H2O (X = Br, 0.5 SO 4 2– and 0.5 SeO 4 ) have been synthesised and their thermal studies carried out. Thermally induced phase transition phenomena are noticed in [NiL2X2] (X = CF3CO 2 and CCl3CO 2 ) and their probable mechanisms are described. [NiL2X2] (X = Br, 0.5 SO 4 2– and 0.5 SeO 4 2– ) and [NiLX2] (X = Cl, 0.5 C2O 4 2– and 0.5 SO 4 2– ) have been prepared by solid state pyrolysis from the respective parent diamine complexes. [NiL2X2] have been made in solid state by temperature arrest technique from [NiL2(CX3CO2)2] (X = Cl and Br).  相似文献   

9.
Summary The reactions of N,N,N,N-tetramethylthiuram disulfide (tmtds) with gold(III) complexes of the [Au(L)X3] type [L = N-methylimidazole (N-Melm), 2-methylbenzoxazole (2-MeBO) and 2,5-dimethylbenzoxazole (2,5-diMeBO), X = Cl, Br or I] are reported, and yielded two main types of product - [Au(Me2dtc)X2] (A) and [Au(Me2dtc)2]X (B) (Me2dtc = N,N-dimethyldithiocarbamato anion). The ratio of the product yields (B/A) depends upon the nature of the ligand (L) and halogen (X). The ratio B/A for the reaction: [Au(L)Cl3] + tmtds = A + B, increases in the sequence N-MeIm < 2- MeBO < 2,5-diMeBO, which correlates well with the level of cytotoxic activity exhibited by the [Au(L)Cl3] complexes. A and B were characterized by their i.r., u.v-vis. and 1-n.m.r. spectra. The magnetic measurements were also recorded. The data support a squareplanar geometry for gold(III) complexes with the Me2dtc ligand bonded in a bidentate fashion; a conjecture has been verified crystallographically for [Au(Me2NCS2)2]-Br·2H2O. The X-ray analysis confirmed that the complex is composed of ionic units: [Au(Me2dtc)2] + and Br and H2O molecules. The Au—S distances are markedly similar, falling in the 2.343(4)–2.350(3) A range.  相似文献   

10.
Summary Palladium(II) mixed ligand complexes with purine or pyrimidine and imidazole derivatives were prepared and characterized by i.r., Raman and electronic spectroscopy. The compounds have the general formula [Pd(L1)(L2)(X2)]; where L1 = adenine, guanine, hypoxanthine, cytosine, 2-aminopyrimidine, 4(6)-hydroxypyrimidine; L2 = N-methylimidazole, N-ethylimidazole or N-propylimidazole; X = Cl or Br. The complexes are square planar with cis-halogens. The purine, pyrimidine and imidazole bases act as monodentate ligands coordinated via the N(7) of purine and N(3) of pyrimidine and imidazole.  相似文献   

11.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

12.
Summary The synthesis and characterization of AuIII complexes with several heterocyclic ligands are reported. The compounds have general formula [AuX3(L)], where L =N-methylimidazole (N-MeIz),N-ethylimidazole (N-EtIz),N-propylimidazole (N-PrIz), benzoxazole (BO), 2-methylbenzoxazole (2-MeBO), 2,5-dimethylbenzoxazole (2,5-diMeBO), 2-amino-pyrimidine (2-APm), 4(6) -hydroxy-pyrimidine [4(6)-hydrPm] or hypoxanthine (Hypox) and X = Cl or Br. Elemental analysis, conductivity measurements and spectral studies were used for the characterization of the complexes. A square-planar geometry withN-bonded heterocyclic ligands is suggested.  相似文献   

13.
Summary 2-Acetylpyridine N(4)-dihexyl- and N(4)-dicyclohexylthiosemicarbazone, HAc4DHex and HAc4DCHex, respectively, and FeIII, CoII, CoIII, NiII, CuII and ZnII complexes have been prepared and characterized by molar conductivities, magnetic susceptibilities and spectroscopic techniques. For many of the complexes, loss of the N(2)H hydrogen occurs, and the ligands coordinate to the metal centres as NNS monoanionic, tridentate ligands, e.g., [M(NNS)X] (M = CoII, NiII, CuII, NNS = Ac4DHex or Ac4DCHex and X = Cl or Br), [Fe(NNS)2]ClO4, [Co(NNS)2]BF4, [Cu(NNS)NO3] and [Zn(NNS)OAc]. ZnII ion is also chelated by neutral ligands in [Zn(HNNS)X2] (X = Cl, Br). In addition, [Ni(Ac4DHex)-(HAc4DHex)]X (X = BF4, ClO4) and [Ni(HAc4DCHex)2]-(BF4)2 are reported where the neutral thiosemicarbazone is coordinated via the pyridyl nitrogen, azomethine nitrogen and thione sulfur. Crystal structure determinations of HAc4DCHex and [Cu(Ac4DHex)Br] show the former to contain the bifurcated hydrogen bonded form and the latter to be planar with no significant interaction between neighbouring centres.  相似文献   

14.
Cyclic voltammetry on [RhL4]+ (L = triisopropylphosphite) in 1,2-dimethoxyethane has shown that the complex undergoes a two-electron reduction to [RhL4], which is reoxidized to [RhL4]+ in two separate one-electron steps. The intermediate d9 species [RhL4] is a long-lived species to which a square-planar geometry has been assigned on the basis of the electronic and ESR spectra.  相似文献   

15.
Summary (Dimethyl sulphide)AuCl reacts with azoles to give adducts [LAuX]2 [L = N-methylimidazole (N-MeIm), N-ethylimidazole (N-EtIm), N-propylimidazole (N-PrIm), 2-methylbenzoxazole (2-MeBO) and 2,5-dimethylbenzoxazole (2,5-diMeBO); X = Cl or Br] which were characterized analytically and spectroscopically, including 1H-n.m.r. I.r. and Raman studies showed that the compounds were binuclear with bridging halogen atoms. A nitrogen-containing ligand was coordinated to nitrogen N(3) atom of the azole ring in monodentate fashion.  相似文献   

16.
Abstract

The ligand L, prepared by template condensation of bis-6,6″-(α-methylhydrazino)-4′-phenyl-2,2′:6″,2′-terpyridine with glyoxal, forms a stable crystalline complex of nickel(II)[Ni(L)-(H2O)2][PF6]2 which is used as a starting material for cyclic voltammetric studies of a series of seven-coordinate nickel(II) complexes [Ni(L)X2]2+ (X = 4-substituted pyridines, imidazole, 1-methylimidazole, 2-methylimidazole, 1,2-dimethylimidazole, pyrazine, thiazole, triphenylphosphite, dimethylsulfoxide and dabco). Cyclic voltammetry of the complexes in acetonitrile shows a reversible one-electron reduction wave in the range of ?1.08 to ?1.46 V vs a Ag/. AgBF4 reference electrode.  相似文献   

17.
Spectral and kinetic parameters were studied for phosphine-bipyridyl ruthenium(II) complexes, namely, cis-[Ru(Bipy)2(PPh3)X](BF4), cis-[Ru(Bipy)(Dppe)X2], and cis-[Ru(Bipy)(Dppene)X2] (where Bipy is 2,2"-bipyridyl, PPh3is triphenylphosphine, Dppe is 1,2-bis(diphenylphosphino)ethane, and Dppene iscis-1,2-bis(diphenylphosphino)ethylene; X = CN, NO2 ), in the frozen (77 K) alcohol glasses (EtOH–MeOH, 4 : 1). The energies of the singlet and triplet metal-to-ligand charge transfer states d(Ru) *(Bipy) were found to increase in the order [Ru(Bipy)2X2] < [Ru(Bipy)2(PPh3)X]+< [Ru(Bipy)(Dppe)X2] < [Ru(Bipy)(Dppene)X2]. The luminescence quantum yields and the rate constants of the nonradiative deactivation of the lowest excited state 3MLCT increase in the same order.  相似文献   

18.
Chemistry of Hydrogen Isocyanide. VIII. Protonation of a ‘Mobile’ Cyano Ligand: cis-[μ-CNH2)Fe2Cp2(CO)3]X (X = Cl, BF4, PF6, I) . Protonation of the terminal cyano ligand in the complex cis-Na[Fe2(CN)Cp2(CO)3] affords the N-diprotonated produkt [Fe2Cp2(CO)3(μ-CNH2)]+ X? (X = Cl, BF4, PF6, I) exclusively; the structure of the chloride has been determined by X-ray analysis.  相似文献   

19.
Summary [RuCl(NO)2(dppbp)]BF4 (dppbp=(Ph2PCH2)2–) has been synthesised from [RuCl(NO)2(PPh3)2]BF4 and dppbp and characterised in the solid state by a single crystal x-ray determination. The [RuCl(NO)2(dppbp)]+ cation, has an approximately square-pyramidal co-ordination geometry with the dppbp ligand occupyingtrans-basal sites. The nitrosyl ligand in the apical site is partially bent [Ru–N–O=156.2(7)0] and the nitrosyl ligand in the basal side is essentially linear [Ru–N–O=172.5(6)0]. The1Hn.m.r. spectrum of [RuCl(NO)2(dppbp)]BF4 in solution has provided some insight into the dynamics of the complex in solution.  相似文献   

20.
Four thiophene functionalized triazole ligands (L1=4-(thenyl)-1,2,4-triazole, L2=4-(thiophene ethyl)-1,2,4-triazole, L3=N-Thiophenylidene-4H-1,2,4-triazole-4-amine, and L4=(4-[(E)-2-(5-sulfothiophene)vinyl]-1,2,4-triazole) were synthesized. These ligands have different lengths and rigidities, while ligand L4 has a sulfonic acid group that can form a hydrogen bond. Five 1D FeII chain complexes were synthesized: [Fe(L1)3](X)2 ⋅ nH2O [X=BF4, n=1.5 ( C1 ); X=ClO4, n=1 ( C2 )], [Fe(L2)3](BF4)2 ⋅ 1.5H2O ( C3 ); [Fe(L3)3](X)2 ⋅ nH2O [X=BF4, n=2 ( C4 ); X=ClO4, n=2.5 ( C5 )]. The results of temperature-dependent magnetic susceptibility reveal that complexes C1 , C2 , and C3 experienced the transition between two spin states. And C4 and C5 maintain high spin states at all temperature ranges. Binuclear complex [Fe2(L3)5(SCN)4] ( C6 ) and mononuclear material [Fe(L4)2(H2O)4] ⋅ 2H2O ( C7 ), these two zero-dimensional molecules were also synthesized. They all display weak antiferromagnetic exchange coupling and a high spin state in the whole process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号