首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substitution of hydrogen bond directed supramolecular assemblies with ethylene glycol chains leads to a reduction in the association constant in apolar solvents, where the reduction of the association constant is dependent on the length of the aliphatic spacer connecting the hydrogen bonds and the ethylene glycol chain.  相似文献   

2.
We have carried out a neutron powder diffraction study of deuterated ethylene glycol (1,2-ethanediol), and deuterated ethylene glycol monohydrate with the D2B high-resolution diffractometer at the Institut Laue-Langevin. Using these data, we have refined the complete structure, including all hydrogen atoms, of the anhydrous phase at 220 K. In addition, we have determined the structure of ethylene glycol monohydrate at 210 K using direct space methods. Anhydrous ethylene glycol crystallizes in space-group P2(1)2(1)2(1) with four formula units in a unit-cell of dimensions a = 5.0553(1) ?, b = 6.9627(1) ?, c = 9.2709(2) ?, and V = 326.319(8) ?(3) [ρ(calc)(deuterated) = 1386.26(3) kg m(-3)] at 220 K. Ethylene glycol monohydrate crystallizes in space-group P2(1)/c with four formula units in a unit-cell of dimensions a = 7.6858(3) ?, b = 7.2201(3) ?, c = 7.7356(4) ?, β = 92.868(3)°, and V = 428.73(2) ?(3) [ρ(calc)(deuterated) = 1365.40(7) kg m(-3)] at 210 K. Both the structures are characterized by the gauche conformation of the ethylene glycol molecule; however, the anhydrous phase contains the tGg' rotamer (or its mirror, g'Gt), whereas the monohydrate contains the gGg' rotamer. In the monohydrate, each water molecule is tetrahedrally coordinated, donating two hydrogen bonds to, and accepting two hydrogen bonds from the hydroxyl groups of neighboring ethylene glycol molecules. There are substantial differences in the degree of weak C-D···O hydrogen bonding between the two crystals, which calls into question the role of these interactions in determining the conformation of the ethylene glycol molecule.  相似文献   

3.
Water?ethylene glycol mixtures containing from 0.002 to 0.998 mole fractions of ethylene glycol at T = 298.15 K and P = 0.1 and 100 MPa are simulated by means of classical molecular dynamics. Such structural and dynamic characteristics of hydrogen bonds as the average number and lifetime, along with the distribution of molecules over the number of hydrogen bonds, are calculated; their changes are analyzed, depending on the mixture’s composition and pressure. It is shown that the components are characterized by a high degree of interpenetration and form a uniform infinite hydrogen-bonded cluster over the range of concentrations. It is found that the higher the concentration of ethylene glycol, the greater the stability of all hydrogen bonds. It is concluded that an increase in pressure lowers the number of hydrogen bonds, while the average lifetime of the remaining hydrogen bonds grows.  相似文献   

4.
Complex dielectric spectra of ethylene glycol and of various derivatives as well as of mixtures of water with an ethylene glycol oligomer and with a poly(ethylene glycol) dimethyl ether oligomer have been measured. The spectra can be well represented by a Cole-Cole [Cole and Cole, J. Chem. Phys. 9, 341 (1941)] spectral function. The extrapolated low frequency (static) permittivity of this function has been evaluated to yield the effective dipole orientation correlation factor of the liquids. The relaxation time of the ethylene glycols displays a characteristic dependence upon the ratio of concentrations of hydrogen bond donating and accepting groups, indicating two opposing effects. With increasing availability of hydrogen bonding sites effects of association and also of dynamical destabilization increase. Both effects exist also in the mixture of water with the oligomers. They are discussed in terms of a wait-and-switch model of dipole reorientation in associating liquids. Another feature in the dependence of the dielectric relaxation time of poly(ethylene glycol)/water mixtures upon mixture composition has been tentatively assigned to precritical demixing behavior of the binary liquids in some temperature range.  相似文献   

5.
Thermal decomposition of urea in ethylene glycol with formation of isocyanic acid and ammonia was studied at the B3LYP/6-311++G(df,p) level of theory. The decomposition process is efficiently catalyzed by monomeric and dimeric forms of ethylene glycol. Ethylene glycol dimer formed via intermolecular hydrogen bonding is a stronger acid than the monomeric species, which is responsible for the higher catalytic activity of the former. Ethylene glycol associates efficiently catalyze addition of ammonium to isocyanic acid in the synthesis of ethylene carbonate.  相似文献   

6.
A procedure for the synthesis of monomethoxypoly(ethylene glycol) aldehydes from monomethoxypoly(ethylene glycol) tosylates is described. The tosylates are converted to aldehydes in high yield via treatment with disodium hydrogen phosphate and DMSO; minimal oligomeric by-products are formed.  相似文献   

7.
Glycolic acid is a useful and important α-hydroxy acid that has broad applications. Herein, the homogeneous ruthenium catalyzed reforming of aqueous ethylene glycol to generate glycolic acid as well as pure hydrogen gas, without concomitant CO2 emission, is reported. This approach provides a clean and sustainable direction to glycolic acid and hydrogen, based on inexpensive, readily available, and renewable ethylene glycol using 0.5 mol % of catalyst. In-depth mechanistic experimental and computational studies highlight key aspects of the PNNH-ligand framework involved in this transformation.  相似文献   

8.
The specific and nonspecific constituents of the total energy of intermolecular interasction in ethylene glycol, diethylene glycol, and formamide were determined for the range 288.15–323.15 K using a simulation approach. Diethylene glycol, like formamide and ethylene glycol, forms networks of hydrogen bonds. In ethylene glycol and formamide, the hydrogen bonds make a predominant contribution to the total interaction energy. The specific and nonspecific contributions in mixtures of the above solvents with dimethyl-formamide were calculated, and the results were discussed in combination with the data for aqueous dimethyl-formamide solutions.Translated from Zhurnal Obshchei Khimii, Vol. 74, No. 11, 2004, pp. 1789–1796.Original Russian Text Copyright © 2004 by Zaichikov, KrestyaninovThis revised version was published online in April 2005 with a corrected cover date.  相似文献   

9.
The state of intracellular water is important in all phases of cryopreservation. Intracellular water can be transported out of the cell, transferred into its solid phase, or blocked by cryoprotectants and proteins in the cytoplasm. The purpose of the present study is to determine the amount of hydrogen-bonded water in aqueous ethylene glycol and glycerol solutions. The effects of temperature and concentration on the density and the hydrogen bonding characteristics of the solution are evaluated quantitatively in this study. To achieve these aims, a series of molecular dynamics simulations of ethylene glycol/water and glycerol/water mixtures of molalities ranging from 1 to 5 m are conducted at 1 atm and at 273, 285, and 298 K, respectively. The simulation results show that temperature and concentration have variable effects on solution density. The proportion of the hydrogen-bonded water by solute molecules increases with rising molality. The ability of the solute molecules to hydrogen bond with water molecules weakens as the solution becomes more concentrated. Moreover, it turns out that the solution concentration can influence the hydrogen bonding characteristics more greatly than the temperature. The glycerol molecule should be a stronger "water blocker" than the ethylene glycol molecule corresponding to the same conditions. These findings provide insight into the cryoprotective mechanisms of ethylene glycol and glycerol in aqueous solutions, which will confer benefits on the cryopreservation.  相似文献   

10.
The polyesterification of succinic acid with ethylene glycol in both equimolar and nonequimolar ratios was investigated at the reaction temperature of 195°C. The experimental results agreed quite well with the kinetic equations proposed in our previous paper for the adipic acid–ethylene glycol system, except in the case of acid-catalyzed equimolar reaction, where a shift of kinetic behavior from reaction control to diffusion control would appear. The apparent rate constants for uncatalyzed and acid-catalyzed reactions were evaluated by using the method of least squares for various values of initial molar ratio between [OH] and [COOH]. The dissociation effect of hydrogen ion from dibasic acid in glycol, as proposed in the adipic acid–ethylene glycol system, could also be applied in the succinic acid–ethylene glycol system to explain the kinetic behavior observed. The kinetic equations previously proposed for polyesterification were again confirmed.  相似文献   

11.
A novel synthetic route that directly inserts ethylene oxide into butyl acetate without any labile hydrogen to produce oligo‐ethylene glycol butyl ether acetates is developed using an efficient acid–base bifunctional catalyst. The layered double hydroxide materials, which have structures similar to that of hydrotalcite, are synthesized using co‐precipitation methods. After modification by organic acid, the as‐prepared catalysts exhibit higher butyl acetate conversion and ethylene oxide catalytic activity with narrow ethylene glycol butyl ether acetate adduct distribution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Vapor-phase OH-stretching overtone spectra of 1,3-propanediol and 1,4-butanediol were recorded and compared to the spectra of ethylene glycol to investigate the effect of increased intramolecular hydrogen bond strength on OH-stretching overtone transitions. The spectra were recorded with laser photoacoustic spectroscopy in the second and third OH-stretching overtone regions. The room-temperature spectra of each molecule are dominated by two conformers that show intramolecular hydrogen bonding. Anharmonic oscillator local-mode calculations of the OH-stretching transitions have been performed to aid assignment of the different conformers in the spectra and to illustrate the effect of the intramolecular hydrogen bonding. The hydrogen bond strength increases in the order ethylene glycol, 1,3-propanediol, and 1,4-butanediol. The overtone transitions of the hydrogen-bonded hydroxyl groups are more difficult to observe with increasing intramolecular hydrogen bond strength. We suggest that the bandwidth of these transitions increases with increasing hydrogen bond strength and with increasing overtone and furthermore that these changes are in part responsible for the lack of observed overtone spectra for complexes.  相似文献   

13.
Features of the reduction of graphene from graphene oxide in media containing hydrazine hydrate, ethylene glycol, and hydrogen are studied. X-ray energy dispersive spectroscopy, Raman spectroscopy, and scanning electron microscopy data indicate that this process proceeds through the high-temperature annealing of graphene oxide in a hydrogen environment.  相似文献   

14.
The aggregation behaviour of Tween 20 in ethylene glycol-water mixed solvents has been investigated using surface tension, density, static and dynamic light scattering, and fluorescence measurements. Micellar and surface thermodynamics data were obtained from the temperature dependence of critical micelle concentrations in various aqueous mixtures of ethylene glycol. In order to evaluate the influence of the cosolvent, the differences in the Gibbs energies of micellization of Tween 20 between water and binary solvents were determined. This study allowed us to conclude that the ability of ethylene glycol to act as a structure breaker and its interaction with the surfactant hydrophilic group are the controlling factors of the micellization process. From the evaluation of the thermodynamics of adsorption at the solution-air interface, it was determined that the surface activity of the surfactant decreases slightly with increasing concentration of ethylene glycol at a given temperature. Partial specific volume data, obtained by density measurements, indicate that the fraction of solvent molecules interacting with the micelle, via hydrogen bonds, remained roughly constant. The effect of cosolvent on the size and solvation of the aggregates was analysed by means of static and dynamic light scattering measurements. It was found that the aggregation number decreased, whereas the whole micellar solvation increased with the ethylene glycol content. Micellar micropolarity was examined using two different probes, pyrene and 8-anilinonaphthelene-1-sulfonic acid, and was found to increase with ethylene glycol addition, accompanied by an enhanced solvation. Fluorescence polarization measurements found by using coumarin 6 as a hydrophobic probe revealed an increase in the micellar microviscosity. The observed trends in these microenvironmental properties were ascribed to a participation by ethylene glycol in the micellar solvation layer.  相似文献   

15.
使用共混后浇铸成膜的方法,制备了聚苯并咪唑-锂盐-聚乙二醇单甲醚组成的锂离子电池共混全固态聚合物电解质。通过傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、差示扫描量热(DSC)、拉伸与交流阻抗测试表征了共混全固态电解质的结构与性能。研究了不同锂盐以及各组分含量对共混全固态电解质的力学性能与电导率的影响。结果表明:聚苯并咪唑与聚乙二醇单甲醚之间存在氢键;共混全固态电解质中聚乙二醇单甲醚处于无定形态;锂盐的加入使聚乙二醇单甲醚的玻璃化转变温度下降;聚乙二醇单甲醚含量越高,共混膜强度越低,电导率越高,并且使用三氟甲磺酸锂作为锂盐时其电导率最高,室温下可以达到3.58×10~(-5) S/cm,高温下可以达到3.3×10~(-3) S/cm,高温下满足对锂离子电池的使用需求。  相似文献   

16.
The structure of mixed nonionic surfactant monolayers of monodecyl hexaethylene glycol (C10E6) and monotetradecyl hexaethylene glycol (C14E6) adsorbed at the air-water interface has been determined by specular neutron reflectivity. Using partial isotopic labeling (deuterium for hydrogen) of the alkyl and ethylene oxide chains of each surfactant, the distribution and relative positions of the chains at the interface have been obtained. The packing of the two different alkyl chain lengths results in structural changes compared to the pure surfactant monolayers. This results in changes in the relative positions of the alkyl chains and of the ethylene oxide chains at the interface. The role of the alkyl chain length is contrasted with that of the ethylene oxide chain length, determined from results reported previously on the nonionic surfactant mixture of monododecyl triethylene glycol (C12E3) and monododecyl octaethylene glycol (C12E8).  相似文献   

17.
Ethylene glycol is a useful organic compound and chemical intermediate for manufacturing various commodity chemicals of industrial importance. Nevertheless, the production of ethylene glycol in a green and safe manner is still a long-standing challenge. Here, we established an integrated, efficient pathway for oxidizing ethylene into ethylene glycol. Mesoporous carbon catalyst produces H2O2, and titanium silicalite-1 catalyst would subsequently oxidize ethylene into ethylene glycol with the in situ generated H2O2. This tandem route presents a remarkable activity, i.e., 86 % H2O2 conversion with 99 % ethylene glycol selectivity and 51.48 mmol gecat−1 h−1 production rate at 0.4 V vs. reversible hydrogen electrode. Apart from generated H2O2 as an oxidant, there exists ⋅OOH intermediate which could omit the step of absorbing and dissociating H2O2 over titanium silicalite-1, showing faster reaction kinetics compared to the ex situ one. This work not only provides a new idea for yielding ethylene glycol but also demonstrates the superior of in situ generated H2O2 in tandem route.  相似文献   

18.
The electronic structure and geometry of cyclic ethers??tetrahydrofuran and 1,4-dioxane??and their 1: 1 and 1: 2 complexes with ethylene glycol, as well as their complexes with ethylene glycol dimers, have been studied by density functional theory method at the B3LYP/6-31+G** level. It has been shown that moderate hydrogen bonds are mainly responsible for complex formation. A great number of conformations of the H-bonded complexes have been found.  相似文献   

19.
Ultrasonic absorption and velocity measurements in aqueous solution of iso-butyl cellosolve (ethylene glycol iso-butyl ether) as a function of the concentration are reported. The two relaxational absorptions have been attributed to the perturbation of the equilibria expressed by AB?A+B and Aα(1/n)An where A is the solute, B is the solvent, AB is the complex and A n is the solute aggregate. The rate constants for each step have been determined. From the concentration dependence of the maximum excess absorption per wave length, the enthalpy change and the volume change for the reaction between the solute and the solvent have been determined for aqueous solutions of butyl cellosolve (ethylene glycol n-butyl ether), iso-butyl cellosolve and propyl cellosolve (ethylene glycol n-propyl ether). The results are consistent with a hydrogen bonding reaction. The effect of the ethers on water structure are considered and it is clear that the fraction of water molecules which can hydrogen bond to the solute decreases with the increasing hydrophobicity of the solute.  相似文献   

20.
Ab initio and density functional methods have been employed to study the structure, stability, and spectral properties of various ethylene glycol (EG(m)) and ethylene glycol-water (EG(m)W(n)) (m = 1-3, n = 1-4) clusters. The effective fragment potential (EFP) approach was used to explore various possible EG(m)W(n) clusters. Calculated interaction energies of EG(m)W(n) clusters confirm that the hydrogen-bonding interaction between EG molecules is perturbed by the presence of water molecules and vice versa. Further, energy decomposition analysis shows that both electrostatic and polarization interactions predominantly contribute to the stability of these clusters. It was found from the same analysis that ethylene glycol-water interaction is predominant over the ethylene glycol-ethylene glycol and water-water interactions. Overall, the results clearly illustrate that the presence of water disrupts the ethylene glycol-ethylene glycol hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号