首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium iron phospho-olivine cathode material with optimized lithium amount for lithium-ion batteries was successfully prepared from low cost Fe2O3 as raw materials by thermal reduction method. The as-obtained material showed a reversible discharge capacity of 153.8 mAh g–1 in the voltage window of 2.0–4.2 V at half-cell level. The pouch-typed cells with prepared Li1.05FePO4 were assembled to investigate electrochemical performance at level of full-cell. The results show that the assembled pouch-typed full-cells present better rate capability and cycle life. The low-cost approach reported here firstly sheds light on application of mass production of olivinestructured LiFePO4 at level of full-cell.  相似文献   

2.
The electrochemical properties and cyclic performances of commercial LiFePO4 cathode material with different ratio of carbon black (CB) and carbon nanotubes (CNTs) as conductive material were tested in this study. Compared with other samples, the sample with 3 wt % CNTs exhibited the best electro-chemical and cyclic performances at various discharging rate at room temperature; and adhesion strength of electrode was improved by adding CNTs. The enhanced electrode performance may due to the unique natures of CNTs and the contact area of CNTs with active material or current collector.  相似文献   

3.
The effect of fluorine doping on the electrochemical performance of LiFePO4/C cathode material is investigated. The stoichiometric proportion of LiFe(PO4)1−x F3x /C (x = 0.01, 0.05, 0.1, 0.2) materials was synthesized by a solid-state carbothermal reduction route at 650 °C using NH4F as dopant. X-ray diffraction, scanning electron microscope, energy-dispersive X-ray, and X-ray photoelectron spectroscopy analyses demonstrate that fluorine can be incorporated into LiFePO4/C without altering the olivine structure, but slightly changing the lattice parameters and having little effect on the particle sizes. However, heavy fluorine doping can bring in impurities. Fluorine doping in LiFePO4/C results in good reversible capacity and rate capability. LiFe(PO4)0.95 F0.15/C exhibits highest initial capacity and best rate performance. Its discharge capacities at 0.1 and 5 C rates are 156.1 and 119.1 mAh g−1, respectively. LiFe(PO4)0.95 F0.15/C also presents an obviously better cycle life than the other samples. We attribute the improvement of the electrochemical performance to the smaller charge transfer resistance (R ct) and influence of fluorine on the PO43− polyanion in LiFePO4/C.  相似文献   

4.
The phase-pure LiFePO4/C cathode materials have been successfully fabricated by precursor containing Fe2O3 coated with polyaniline through carbothermal reduction method. The polyaniline coating at Fe2O3 could restrict the growth of crystal and subsequently become electric carbon at higher synthesis temperature. Compared with conventional carbothermal reduction method, the sample showed a better capacity and less than 3% capacity fading after 30 cycles at various charge and discharge rate.  相似文献   

5.
Tavorite-structured lithium transition metal fluorophosphates have been considered as a good alternative to olivine-type cathode for lithium-ion batteries due to its exceptional ionic conductivity and excellent thermal stability. In this work, nearly monodisperse LiFePO4F nanospheres with high purity are successfully synthesized by a solid-state route associated with chemically induced precipitation method for the first time. The synthesized LiFePO4F presents nearly monodisperse nanospheres particles with average particle size of ~?500 nm. Cyclic voltammetry data exhibit a clear indication of the Fe3+/Fe2+ redox couple that involves a two-phase transition. Its electrochemical behaviors are examined by galvanostatic charge-discharge. The results show that the initial discharge capacity is 110.2 mAh g?1 at 0.5 C, after 200 cycles is still retained 104.0 mAh g?1 with the retention rate of 94.4%. The excellent cycle performance is mainly attributed to the uniform nanospheres-like morphology which is not only beneficial to shorten the transport distance of ions and electrons, but also improve the interface area between electrode and electrolyte, and thus improve the kinetics of Li ions.  相似文献   

6.
LiFePO4/C material has been prepared using fast-melt synthesis method followed by grinding and carbon coating. The low-cost iron ore concentrate (IOC) and purified iron ore concentrate (IOP) were used as iron precursors in the melt process to reduce significantly the cost of LiFePO4/C. The same product was also synthesized using pure Fe2O3 under similar conditions as reference. The physical-chemical and electrochemical properties of samples were investigated. The X-ray Diffraction (XRD) results confirm the formation of an olivine structure of LiFePO4 with a minor amount of Li3PO4 and Li4P2O7 impurities for all the samples but no Fe2P. The power performances of LiFePO4/C using low-cost iron precursors were close to the sample using pure Fe2O3 precursor although capacity in mAh g?1 is somewhat lower. With the inherent presence of silicon and other metals species, multi-substitution may take place when using IOC as source of iron leading to a Li(Fe1-yMy)(P1-xSix)O4 general composition. Multi-substitution, however, allows a better cycling stability. Therefore, these iron precursors present a promising option in this field to reduce the cost of a large-scale synthesis of LiFePO4/C for Li-ion batteries application.  相似文献   

7.
LiMn2O4 is one of the most promising cathode materials due to its high abundance and low cost. However, the practical application of LiMn2O4 is greatly limited owing to its low volumetric energy density. Therefore, increasing its energy density is an urgent problem to be resolved. Herein, using the simple and mass production preferred solid-state reaction, surficial Nb-doped LiMn2O4 composed of the truncated octahedral or spherical-like primary particles are successfully synthesized. Auger electron spectroscopy (AES) and X-ray diffraction (XRD) characterizations confirm that most of Nb5+ enrich in the surficial layer of the particles to form a LiMn2-xNbxO4 phase. This kind of doping can increase the specific discharge capacity of LiMn2O4 materials. Contrast with the pristine LiMn2O4, the discharge capacity of LiMn1.99Nb0.01O4-based 18650R-type battery increases from 1497 to 1705 mAh with the volumetric energy density increasing by ~?13.9%, benefiting from the joint increments of the specific discharge capacity from 119.5 to 123.7 mAh g?1 and the compacted density from 2.81 to 3.10 g cm?3. Furthermore, the capacity retention after 500 cycles at 1 C (1500 mA) is also improved by 17.1%.
Graphical abstract ?
  相似文献   

8.
Transition metal oxides have great potential as anode for lithium-ion batteries (LIBs), owing to their high theoretical capacity and low cost. However, the poor cycling stability and electron conductivity have limited the widely expected application of transition metal oxides. In this work, highly single-crystalline Co3O4 cubes with 400 nm in the average side length are successfully synthesized by a facile hydrothermal method. When used as anode for LIBs, the Co3O4 single-crystalline cubes exhibit highly stable and substantial discharge capacities of the amount to 877 mA h g?1 at 200 mA g?1 after 110 cycles with remarkable capacity retention of 98%, and 576 mA h g?1 even at a high rate of 2000 mA g?1. The scalability of the preparation method and the impressive results achieved here demonstrate the potential for the application to the future development of transition metal oxides anodes. These results suggest that the single-crystalline Co3O4 is a promising electrode material for the high-performance energy storage devices.  相似文献   

9.
Mn3O4 and Mn3O4 (140)/CNTs have been investigated as high-capacity anode materials for lithium-ion batteries (LIBs) applications. Nanoparticle Mn3O4 samples were synthesized by hydrothermal method using Mn(Ac)2 and NH3·H2O as the raw materials and characterized by XRD, TG, EA, TEM, and SEM. Its electrochemical performances, as anode materials, were evaluated by galvanostatic discharge-charge tests. The Mn3O4 (140)/CNTs displays outstanding electrochemical performances, such as high initial capacity (1942 mAh g?1), stable cycling performance (1088 mAh g?1 and coulombic efficiency remain at 97% after 60 cycles) and great rate performance (recover 823 mAh g?1 when return to initial current density after 44 cycles). Compared to pure Mn3O4 (140), the improving electrochemical performances can be attributed to the existence of very conductive CNTs. The Mn3O4 (140)/CNTs with excellent electrochemical properties might find applications as highly effective materials in electromagnetism, catalysis, microelectronic devices, etc. The process should also offer an effective and facile method to fabricate many other nanosized metallic oxide/CNTs nanocomposites for low-cost, high-capacity, and environmentally benign materials for LIBs.  相似文献   

10.
The LiFePO4 materials were prepared by incorporating conductive carbon from pyrolysising three different carbon sources (acetylene black, glucose and phonetic resin). The morphology LiFePO4/C was investigated by the SEM. Results revealed that the carbon precursor has much effect on the morphology of the samples. The carbon coated LiFePO4 showed much better performance in terms of the discharge capacity and rate capability than the bare LiFePO4. Among the carbon coated LiFePO4, the particles coated with phonetic resin residual carbon exhibited better electrochemical properties than others and a proper mechanism was proposed.  相似文献   

11.
Li0.97Er0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Er3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methodes. The electrochemical tests show Li0.97Er0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh g−1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh g−1 at 2C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2C.  相似文献   

12.
LiFePO4/C composite cathode material is prepared by ball milling with the assistance of EDTA chelation with using water as the media of ball mill procedure. FePO4 and LiOH are used as starting materials; a certain amount of glucose is used as carbon sources and reduction agent. The structure and morphology of the composite are characterized by X-ray diffraction and scanning electron microscopy. Cyclic voltammetry, AC impedance measurements, and galvanostatic charge–discharge and cycling performances are used to characterize its electrochemical properties. The results indicate that the performances of composites prepared by chelation-assisted method are much better than common ball milling method which using alcohol or acetone as the media of ball mill procedure. The stable discharge capacity of the prepared composite is 150 and 105 mAh g−1 at 1 and 10 C rate, respectively.  相似文献   

13.
Sandwich-structured C@Fe3O4@C hybrids with Fe3O4 nanoparticles sandwiched between two conductive carbon layers have attracted more and more attention owing to enhanced synergistic effects for lithium-ion storage. In this work, an environment-friendly procedure is developed for the fabrication of sandwich-like C@Fe3O4@C dodecahedrons. Zeolitic imidazolate framework (ZIF-8)-derived carbon dodecahedrons (ZIF-C) are used as the carbon matrix, on which iron precursors are homogeneously grown with the assistance of a polyelectrolyte layer. The subsequent polydopamine (PDA) coating and calcination give rise to the formation of sandwiched ZIF-C@Fe3O4@C. When being evaluated as the anode material for lithium-ion batteries, the obtained hybrid manifests a high reversible capacity (1194 mAh g?1 at 0.05 A g?1), good high-rate behavior (796 mAh g?1 at 10 A g?1), and negligible capacity loss after 120 cycles.  相似文献   

14.
In this study, the effect of the sol-gel starting materials with different particle sizes on the sol-gel-synthesized spinel Li4Ti5O12 (LTO) was systematically investigated. The physical and electrochemical properties of the synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller-specific surface area analyses, galvanostatic charge/discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. It was found that the initial particle size of sol-gel starting material played a crucial role on the properties of as-prepared LTOs. The LTO synthesized with the relatively finer particle size of starting materials possessed relatively smaller particle size and larger specific surface area and therefore resulted in the superior electrochemical properties. The initial discharge capacity of the as-prepared LTO exhibited 168.2, 150.6, and 142.7 mAh g?1 at current densities of 1, 5, and 10 C, respectively, and up to 95, 95, and 90 % of the corresponding initial discharge capacity was retained after 50 cycles.  相似文献   

15.
A systematic investigation is conducted to evaluate the influence of dissolved manganese ions from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. Worse capacity fading is found in Li4Ti5O12-based full cells with increasing manganese ion addition. The interfacial film covered on Li4Ti5O12 anode is affected by the manganese ion contamination during cycling, which becomes thicker but more non-uniform, and is composed by less ratio of compact components and more ratio of loose components compared with that free of contamination. Such flawed passivation film cannot restrain the further penetration of electrolyte and inhibit the contact between electrolyte and Li4Ti5O12 anodes efficiently, thus triggering more interfacial reactions and that should be the reason for the more severe capacity degradation. Accordingly, we suggest that in addition to optimizing the chemistry and microstructure of Li4Ti5O12 electrode, more attention should also be paid to minimizing the destructive effect imposed on the passivation film of Li4Ti5O12 electrode by the transition metal ion contaminations.  相似文献   

16.
17.
A series of lithium iron phosphates was synthesized via the sol–gel route. Iron phosphides, which are electronic conductors, were formed when sintered at 850°C. Magnetic susceptibility measurements on the samples show antiferromagnetic behaviour with T N=50±2 K for LiFePO4 and Li0.95Mg0.05PO4 sintered at temperatures below 850°C. The LiFePO4 and Li0.95Mg0.05FePO4 cathodes show a stable electrochemical capacity in the range of 150–160 mA h/g on cycling. The cyclability deteriorates with increasing sample sintering temperature due to the increased crystal size and impurities.  相似文献   

18.
Li-ion batteries with LiFePO4/C composites are difficult to be charged at low temperatures. In order to improve the low temperature performance of LiFePO4/C power batteries, the charge–discharge characteristics were studied at different temperatures, and a new charging mode under low temperature was proposed. In the new charging mode, the batteries were excited by current pulses with the charge rates between 0.75 C and 2 C, while the discharge rates between 3 and 4 C before the conventional charging (CC–CV). Results showed that the surface temperature of Li-ion battery ascended to 3 °C at the end of pulse cycling when the environment temperature was −10 °C. Comparing with the conventional charging, the whole charge time was cut by 36 min (23.4%) and the capacity was 7.1% more at the same discharge rate, respectively.  相似文献   

19.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

20.
Herein, porous Li3V2(PO4)3/C microspheres made of nanoparticles are obtained by a combination of sol spray-drying and subsequent-sintering process. Beta-cyclodextrin serves as a special chelating agent and carbon source to obtain carbon-coated Li3V2(PO4)3 grains with the size of ca. 30–50?nm. The unique porous structure and continuous carbon skeleton facilitate the fast transport of lithium ion and electron. The Li3V2(PO4)3/C microspheres offer an outstanding electrochemical performance, which present a discharge capacity of 122?mAh?g?1 at 2?C with capacity retention of 96% at the end of 1000 cycles and a high-rate capacity of 113?mAh?g?1 at 20?C in the voltage window of 3.0–4.3?V. Moreover, the Li3V2(PO4)3/C microspheres also give considerable cycling stability and high-rate reversible capacity at a higher end-of-charge voltage of 4.8?V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号