首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report for the first time a continuous-wave (CW) coherent radiation at 500.5 nm by intracavity sum-frequency generation of 1063 nm Nd:GdVO4 laser and 946 nm Nd:YAG laser. Blue-green laser is obtained by using a doubly cavity, type-II critical phase matching KTiOPO4 (KTP) crystal sum-frequency mixing. With total pump power of 27.8 W, TEM00 mode blue-green laser at 500.5 nm of 421 mW is obtained. At the output power level of 421 mW, the blue-green power stability is better than 2.8% and laser beam quality M 2 factor is 1.37.  相似文献   

2.
Y. Wu  G. Y. Jin  Y. Dong 《Laser Physics》2011,21(8):1378-1381
We report for the first time a continuous-wave (CW) blue-green radiation at 504 nm by intracavity sum-frequency generation of 946 nm Nd:YAG laser and 1080 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 504 nm blue-green laser was obtained by 946 and 1080 nm intra-cavity sum-frequency mixing, and output power of 215 mW was demonstrated. At the output power level of 215 mW, the output power stability is better than 4.7% and laser beam quality M2 factor is 1.21.  相似文献   

3.
We report for the first time a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:LuVO4 crystal. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 493 nm is obtained by 1066 and 916 nm intracavity sum-frequency mixing. The maximum laser output power of 520 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 520 mW, the output stability is better than 2.8%. The beam quality M 2 value is are about 1.22 and 1.31 in both horizontal and vertical dimensions respectively.  相似文献   

4.
We report for the first time a coherent red radiation at 689 nm by intracavity sum-frequency generation of the 1319- and 1444-nm laser-lines of two Nd:YAG lasers. Using type-II critical phase matching KTP crystal, 689-nm red laser was obtained by 1444- and 1319-nm intra-cavity sum-frequency mixing, and output power of 156 mW was obtained. At the output power level of 156 mW, the output power stability is better than 5.0% and laser beam quality M 2 factor is 1.23.  相似文献   

5.
We report for the first time a continuous-wave (CW) orange-red radiation at 620 nm by intracavity sum-frequency generation of 1085-nm Nd:YVO4 laser and 1444-nm Nd:YAG laser. Using type-II critical phase matching KTP crystal, 620-nm orange-red laser was obtained by 1085- and 1444-nm intra-cavity sum-frequency mixing, and output power of 223 mW was demonstrated. At the output power level of 223 mW, the output power stability is better than 3% and laser beam quality M 2 factor is 1.32.  相似文献   

6.
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in two Nd:LuVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a yellow laser at 590 nm is obtained by 1066 and 1321 nm intracavity sum-frequency mixing. The maximum laser output power of 223 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 223 mW, the output stability is better than 4.5%.  相似文献   

7.
We report a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 490 nm is obtained by 1063 and 908 nm intracavity sum-frequency mixing. The maximum laser output power of 118 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 118 mW, the output stability is better than 4.2%.  相似文献   

8.
Fu  Q.  Jiang  H. L. 《Laser Physics》2012,22(5):907-910
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:YVO4 and Nd:YLF crystals. Using type-II critical phase-matching (CPM) KTP crystal, a green laser at 539 nm is obtained by 914 and 1313 nm intracavity sum-frequency mixing. The maximum laser output power of 388 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 388 mW, the output stability is better than 4.6%.  相似文献   

9.
We report for the first time a continuous-wave (CW) coherent radiation at 480 nm by intracavity sum-frequency generation of 900 nm Neodymium Doped Strontium and Lanthanum Aluminate (Nd:ASL) laser and 1030 nm Yb:Y3Al5O12 (Yb:YAG) laser. Blue laser is obtained by using a doubly cavity, type-I critical phase matching LiB3O5 (LBO) crystal sum-frequency mixing. With total pump power of 28.6 W, the blue laser at 480 nm of 170 mW is obtained. At the output power level of 170 mW, the blue power stability is better than 4.7% and laser beam quality M 2 factor is 1.43.  相似文献   

10.
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a green laser at 538 nm is obtained by 912 and 1313 nm intracavity sum-frequency mixing. The maximum output power of 185 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 185 mW, the output stability is better than 3.3%.  相似文献   

11.
We report for the first time a continuous-wave (CW) green laser emission by sum-frequency mixing in Yb:YAG crystal. Using type-I critical phase-matching LBO crystal, a green laser at 520 nm is obtained by 1030 and 1048 nm intracavity sum-frequency mixing. The maximum laser output power of 269 mW is obtained when an incident pump laser of 17.8 W is used. At the output power level of 269 mW, the output stability is better than 3.2%.  相似文献   

12.
It is reported that efficient continuous-wave (CW) blue-green laser generation at 500 nm in a LBO crystal at type-I phase matching direction performed with a Ti:sapphire laser-pumped Yb:KYW laser. With incident pump power of 8.7 W, output power of 138 mW at 500 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 138 mW, the blue-green output stability is better than 2.8%. The blue-green beam quality M 2 values were equal to 1.25 and 1.18 in X and Y directions, respectively.  相似文献   

13.
Liang  W.  Sun  G. C.  Yu  X.  Li  B. Z.  Jin  G. Y. 《Laser Physics》2011,21(6):1067-1070
We report for the first time a continuous-wave (CW) yellow laser emission by sum-frequency mixing in Nd:YAG crystal. Using type-I critical phase-matching LBO crystal, a yellow laser at 572 nm is obtained by 1444 and 946 nm intracavity sum-frequency mixing. The maximum laser output power of 178 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 178 mW, the output stability is better than 4.2%.  相似文献   

14.
A dual-wavelength continuous-wave (CW) diode end-pumped Nd3+:YAlO3 (Nd:YAP) laser that generates simultaneous laser action at the wavelengths 930 and 1341 nm is demonstrated. A total output power of 778 mW for the dual-wavelength was achieved at the incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 930 and 1341 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 103 mW at 549 nm.  相似文献   

15.
We report for the first time a continuous-wave (CW) blue radiation at 494 nm by intracavity sumfrequency generation of 912 nm Nd:GdVO4 laser and 1079 nm Nd:YAlO3 (Nd:YAP) laser. Using type-I critical phase matching LiB3O5 (LBO) crystal, 494 nm blue laser was obtained by 912 and 1079 nm intra-cavity sum-frequency mixing, and output power of 179 mW was demonstrated. At the output power level of 179 mW, the output power stability is better than 3.5% and laser beam quality M 2 factor is 1.21.  相似文献   

16.
A dual-wavelength continuous-wave (CW) diode end-pumped Nd:YLiF4 (Nd:YLF) laser that generates simultaneous laser action at the wavelengths 1047 and 1321 nm is demonstrated. A total output power of 350 mW for the dual-wavelength was achieved. Furthermore, intracavity sum-frequency mixing at 1047 and 1321 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 34 mW at 584 nm.  相似文献   

17.
We report a double z-type folded plane-plane symmetrical cavity diode side pumped solid state yellow-orange laser at 593 nm by using intracavity sum-frequency mixing. By carefully designing the cavity and employing several techniques to increase sum-frequency efficiency, a Q-switched yellow-orange laser source, with an average output power of 8 W, a beam quality factor M 2 = 4.86, and a repetition rate of 8 kHz is developed. In this paper, we first use 1338 and 1064 nm emissions of Nd:YAG crystal to generate 593 nm yellow-orange laser beam by intracavity sum-frequency mixing (SFM).  相似文献   

18.
Xu  L. J.  Zhang  X. H.  Tan  Y.  Zhang  F. D.  Jin  G. Y. 《Laser Physics》2011,21(6):1054-1056
We report on the efficient continuous-wave (CW) dual-wavelength operation of a Nd:LuVO4 laser at 916 and 1343 nm. An output power of 2.15 W for the dual-wavelength was achieved at the incident pump power of 18.2 W. Intracavity sum-frequency mixing at 916 and 1343 nm was then realized in a LBO crystal to reach the yellow-green range. A maximum output power of 523 mW in the yellow-green spectral range at 545 nm has been achieved. The yellow-green output stability is better than 3.5%. The yellow-green beam quality M 2 value are about 1.31 and 1.18 in both horizontal and vertical dimensions, respectively.  相似文献   

19.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:LuVO4 laser that generates simultaneous laser action at the wavelengths 1066 and 1343 nm is demonstrated. A total dual-wavelength output power of 2.58 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 1066 and 1343 nm was then realized in a LBO crystal to reach the yellow range. We obtained a total CW yellow output power of 830 mW at 594 nm.  相似文献   

20.
A dual-wavelength continuous-wave (CW) diode-pumped Nd:YVO4 laser that generates simultaneous laser action at the wavelengths 914 and 1342 nm is demonstrated. A total dual-wavelength output power of 1.79 W was achieved at the incident pump power of 18.2 W. Furthermore, intracavity sum-frequency mixing at 914 and 1342 nm was then realized in a LBO crystal to reach the yellow-green range. We obtained a total CW output power of 212 mW at 544 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号