首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Canonical sampling through velocity rescaling   总被引:2,自引:0,他引:2  
The authors present a new molecular dynamics algorithm for sampling the canonical distribution. In this approach the velocities of all the particles are rescaled by a properly chosen random factor. The algorithm is formally justified and it is shown that, in spite of its stochastic nature, a quantity can still be defined that remains constant during the evolution. In numerical applications this quantity can be used to measure the accuracy of the sampling. The authors illustrate the properties of this new method on Lennard-Jones and TIP4P water models in the solid and liquid phases. Its performance is excellent and largely independent of the thermostat parameter also with regard to the dynamic properties.  相似文献   

2.
The computation of long‐range potentials is one of the demanding tasks in Molecular Dynamics. During the last decades, an inventive panoply of methods was developed to reduce the CPU time of this task. In this work, we propose a fast method dedicated to the computation of the electrostatic potential in adaptively restrained systems. We exploit the fact that, in such systems, only some particles are allowed to move at each timestep. We developed an incremental algorithm derived from a multigrid‐based alternative to traditional Fourier‐based methods. Our algorithm was implemented inside LAMMPS, a popular molecular dynamics simulation package. We evaluated the method on different systems. We showed that the new algorithm's computational complexity scales with the number of active particles in the simulated system, and is able to outperform the well‐established Particle Particle Particle Mesh (P3M) for adaptively restrained simulations. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
The authors present a hybrid Brownian dynamics/Monte Carlo algorithm for simulating solutions of highly entangled semiflexible polymers or filaments. The algorithm combines a Brownian dynamics time-stepping approach with an efficient scheme for rejecting moves that cause chains to cross or that lead to excluded volume overlaps. The algorithm allows simulation of the limit of infinitely thin but uncrossable threads, and is suitable for simulating the conditions obtained in experiments on solutions of long actin protein filaments.  相似文献   

4.
本文介绍了假正交电子定域态间电子转移矩阵元的计算。  相似文献   

5.
Semiflexible models are often used to study macromolecules containing stable structural elements. Based on rigid body dynamics, we developed a rigid fragment constraint dynamics algorithm for the simulation of semiflexible macromolecules. Stable structural elements are treated as rigid fragments. Rigid fragment constraints, defined as combinations of distance constraints and position constraints, are introduced to limit internal molecular motion to the required mode. The constraint forces are solved separately for each rigid fragment constraint and iteratively until all constraint conditions are satisfied within a given tolerance at each time step, as is done for the bond length constraint in the SHAKE algorithm. The orientation of a rigid fragment is represented by the quaternion parameters, and both translation and rotation are solved by the leap-frog formulation. We tested the algorithm with molecular dynamics simulations of a series of peptides and a small protein. The computation cost for the constraints is roughly proportional to the size of the molecule. In the microcanonical ensemble simulation of polyvalines, the total energy was conserved satisfactorily with time steps as large as 20 fs. A helix folding simulation of a synthetic peptide was carried out to show the efficiency of the algorithm in a conformational search. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1555–1566, 1998  相似文献   

6.
Molecular dynamics methods have been employed in order to calculate the (p,rho,T)-properties and the internal energy of gas and crystal phases in stable and metastable equilibrium coexistence states for a model system consisting of 2048 Lennard-Jones particles. Thermal and caloric equations of state and the spinodal curves of the vapor and crystal phases have been determined. A new algorithm for the computation of phase equilibrium curves is suggested. Employing this method, the sublimation curve and its metastable extension to temperatures above the triple point have been calculated. It is found that the crystal-gas phase equilibrium terminates on the spinodal of the superheated crystal. The point of contact of the sublimation line and the spinodal is a singular point of the thermodynamic surface of states of a simple system considered.  相似文献   

7.
In this article, we describe a domain decomposition method for the efficient parallel computation of nonbonded forces and energies in condensed-phase molecular systems. This decomposition is based upon the monotonic logical grid (MLG) approach of Boris [J. Boris, J. Comp. Phys., 66 , 1 (1986)] and yields an efficient, scalable algorithm for interparticle interaction computation on private-memory, single-instruction multiple-data (SIMD) parallel computers. We illustrate the application of this technique in a molecular dynamics kernel for rigid molecular solvents by simulating the structural and thermodynamic properties of water and methanol. The performance of this algorithm on the Thinking Machines' CM-2, private-memory SIMD computer, is demonstrated to be good compared to conventional vector/parallel supercomputers. However, as the fluid becomes less structured performance slightly degrades. © 1994 by John Wiley & Sons, Inc.  相似文献   

8.
A_2B模型分子经典轨迹的辛算法计算   总被引:6,自引:0,他引:6  
采用辛算法计算了A2B模型分子的经典轨迹并与传统Runge-Kutta (R-K)算法进行了比较.结果表明,在微观反应动力学研究所应考虑的时间范围内,辛算法的结果与理论分析一致,R-K法的结果则面目全非.因此,用辛算法替代传统数值方法有可能克服目前经典轨迹计算存在的困难,从根本上改进微观反应动力学研究的经典轨迹方法.  相似文献   

9.
The free energy of solvation for a large number of representative solutes in various solvents has been calculated from the polarizable continuum model coupled to molecular dynamics computer simulation. A new algorithm based on the Voronoi-Delaunay triangulation of atom-atom contact points between the solute and the solvent molecules is presented for the estimation of the solvent-accessible surface surrounding the solute. The volume of the inscribed cavity is used to rescale the cavitational contribution to the solvation free energy for each atom of the solute atom within scaled particle theory. The computation of the electrostatic free energy of solvation is performed using the Voronoi-Delaunay surface around the solute as the boundary for the polarizable continuum model. Additional short-range contributions to the solvation free energy are included directly from the solute-solvent force field for the van der Waals-type interactions. Calculated solvation free energies for neutral molecules dissolved in benzene, water, CCl4, and octanol are compared with experimental data. We found an excellent correlation between the experimental and computed free energies of solvation for all the solvents. In addition, the employed algorithm for the cavity creation by Voronoi-Delaunay triangulation is compared with the GEPOL algorithm and is shown to predict more accurate free energies of solvation, especially in solvents composed by molecules with nonspherical molecular shapes.  相似文献   

10.
A theoretical introduction to the use of Kalman filtering in analytical chemistry is based on multicomponent-analysis computations with the non-recursive least-squares estimation method as a starting point. An initial value for the computation of the error covariance matrix is given and some new practical applications (determination of number of components, estimation of constant systematic error) are derived and demonstrated. Theory and practice suggest a new possible design for experimental measurements and novel applications of on-line computation and computer control. The excellent performance of the Kalman filter algorithm is demonstrated.  相似文献   

11.
Transition path sampling (TPS) algorithms have been implemented with deterministic dynamics, with thermostatted dynamics, with Brownian dynamics, and with simple spin flip dynamics. Missing from the TPS repertoire is an implementation with kinetic Monte Carlo (kMC), i.e., with the underlying dynamics coming from a discrete master equation. We present a new hybrid kMC-TPS algorithm and prove that it satisfies detailed balance in the transition path ensemble. The new algorithm is illustrated for a simplified Markov State Model of trp-cage folding. The transition path ensemble from kMC-TPS is consistent with that obtained from brute force kMC simulations. The committor probabilities and local fluxes for the simple model are consistent with those obtained from exact methods for simple master equations. The new kMC-TPS method should be useful for analysis of rare transitions in complex master equations where the individual states cannot be enumerated and therefore where exact solutions cannot be obtained.  相似文献   

12.
In this study, we present a new molecular dynamics program for simulation of complex molecular systems. The program, named ORAC, combines state-of-the-art molecular dynamics (MD) algorithms with flexibility in handling different types and sizes of molecules. ORAC is intended for simulations of molecular systems and is specifically designed to treat biomolecules efficiently and effectively in solution or in a crystalline environment. Among its unique features are: (i) implementation of reversible and symplectic multiple time step algorithms (or r-RESPA, reversible reference system propagation algorithm) specifically designed and tuned for biological systems with periodic boundary conditions; (ii) availability for simulations with multiple or single time steps of standard Ewald or smooth particle mesh Ewald (SPME) for computation of electrostatic interactions; and (iii) possibility of simulating molecular systems in a variety of thermodynamic ensembles. We believe that the combination of these algorithms makes ORAC more advanced than other MD programs using standard simulation algorithms. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1848–1862, 1997  相似文献   

13.
The authors present a new computational scheme to perform accurate and fast direct correlation-corrected vibrational self-consistent field (CC-VSCF) computations for a selected number of vibrational modes, which is aimed at predicting a few vibrations in large molecular systems. The method is based on a systematic selection of vibrational mode-mode coupling terms, leading to the direct ab initio construction of a sparse potential energy surface. The computational scaling of the CC-VSCF computation on the generated surface is then further reduced by using a screening procedure for the correlation-correction contributions. The proposed method is applied to the computation of the OH-stretch frequency of five aliphatic alcohols. The authors investigate the influence of different pseudopotential and all-electron basis sets on the quality of the correlated potential energy surfaces computed and on the OH-stretch frequencies calculated for each surface. With the help of these test systems, the authors show that their method offers a computational scaling that is two orders of magnitude lower than a standard CC-VSCF method and that it is of equal accuracy.  相似文献   

14.
Chemical reaction knowledge is usually summarized and retrieved by chemists from references, journals, and reaction databases. To rigorously extract chemical reaction knowledge from large data sets, computer algorithms become much more important. This paper presents a new approach, superstructure searching (SSS) algorithm, for generic reaction retrieval. The algorithm considers all known reaction patterns from the targeted structure and assigns synthetic routes for new chemical compounds. This algorithm consists of screening, atom-by-atom comparison, and computation of R-groups' similarity.  相似文献   

15.
The authors develop an efficient particle labeling procedure based on a linked cell algorithm which is shown to reduce the computing time for a molecular dynamics simulation by a factor of 3. They prove that the improvement of performance is due to the efficient fulfillment of both spatial and temporal locality principles, as implemented by the contiguity of labels corresponding to interacting atoms. Finally, they show that the present label reordering procedure can be used to devise an efficient parallel one-dimensional domain decomposition molecular dynamics scheme.  相似文献   

16.
The accuracy and simplicity of the Poisson-Boltzmann electrostatics model has led to the suggestion that it might offer an efficient solvent model for use in molecular mechanics calculations on biomolecules. We report a successful merger of the Poisson-Boltzmann and molecular dynamics approaches, with illustrative calculations on the small solutes dichloroethane and alanine dipeptide. The algorithm is implemented within the program UHBD. Computational efficiency is achieved by the use of rather coarse finite difference grids to solve the Poisson-Boltzmann equation. Nonetheless, the conformational distributions generated by the new method agree well with reference distributions obtained as Boltzmann distributions from energies computed with fine finite difference grids. The conformational distributions also agree well with the results of experimental measurements and conformational analyses using more detailed solvent models. We project that when multigrid methods are used to solve the finite difference problem and the algorithm is implemented on a vector supercomputer, the computation of solvent electrostatic forces for a protein of modest size will add only about 0.1 s computer time per simulation step relative to a vacuum calculation. © 1995 by John Wiley & Sons, Inc.  相似文献   

17.
A new method is presented for defining a smooth, triangulated analytic surface for biological molecules. The surface produced by the algorithm is well-suited for use with a recently developed polarizationcharge technique1 for the computation of the electrostatic potential of solvated molecules, and may also be used for calculations of molecular surface areas and volumes. The new method employs Connolly's definitions of contact, reentrant and saddle surface,2 but includes modifications that preclude the presence of self-interesting reentrant surface, and also insure a rigorous decomposition of contact regions into curvilinear finite elements. The triangulation algorithm may be used in conjunction with the electrostatic methods described previously to compute the electric potential of molecules of arbitrary shape in solution. Applications include the estimation of hydration enthalpies, computation of the electrostatic forces associated with solvation, estimation of interactions between separate charged species in solution, and computation of the three-dimensional form of the molecular electric potential. Test calculations are presented for a double-stranded dinucleotide, the polypeptide enkephalin, and the protein ferredoxin.  相似文献   

18.
We review principles of non-Hamiltonian statistical mechanics and present a new set of equations and integration algorithm for isothermal-isobaric dynamics. The chief advantage of the present scheme is that it is somewhat simpler than previous methods. We perform numerical simulations to test the accuracy of the algorithm and compare its stability to that of a "gold standard," a symplectic integrator for Hamiltonian dynamics of the same system. The stability of the isothermal-isobaric algorithm is comparable to the stability of the symplectic integrator.  相似文献   

19.
In recent years several implementations of molecular dynamics (MD) codes have been reported on multiple instruction multiple data (MIMD) machines. However, very few implementations of MD codes on single instruction multiple data (SIMD) machines have been reported. The difficulty in using pair lists of nonbonded interactions is the major problem with MD codes for SIMD machines, such that, generally, the full connectivity computation has been used. We present an algorithm, the global cut-off algorithm (GCA), which permits the use of pair lists on SIMD machines. GCA is based on a probabilistic approach and requires the cut-off condition to be simultaneously verified on all nodes of the machine. The MD code used was taken from the GROMOS package; only the routines involved in the pair lists and in the computation of nonbonded interactions were rewritten for a parallel architecture. The remaining calculations were performed on the host computer. The algorithm has been tested on Quadrics computers for configurations of 32, 128, and 512 processors and for systems of 4000, 8000, 15,000, and 30,000 particles. Quadrics was developed by Istituto Nazionale di Fisica Nucleare (INFN) and marketed by Alenia Spazio. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 685–694, 1998  相似文献   

20.
We introduce a new optimization algorithm that combines the basin-hopping method, which can be used to efficiently map out an energy landscape associated with minima, with the multicanonical Monte Carlo method, which encourages the system to move out of energy traps during the computation. As an example of implementing the algorithm for the global minimization of a multivariable system, we consider the Lennard-Jones systems containing 150-185 particles, and find that the new algorithm is more efficient than the original basin-hopping method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号