首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Electric field gradients at the nuclei of halogen atoms are calculated using a finite field approach. The four-component Dirac-Coulomb Hamiltonian serves as the framework, all electrons are correlated by the relativistic Fock-space coupled cluster method with single and double excitations, and the Gaunt term, the main part of the Breit interaction, is included. Large basis sets (e.g., 28s24p21d9f4g2h Gaussian-type functions for I) are used. Combined with experimental nuclear quadrupole coupling constants, accurate estimates of the nuclear quadrupole moments are obtained. The calculated values are Q(35Cl)=-81.1(1.2) mb, Q(79Br)=302(5) mb, and Q(127I)=-680(10) mb. Currently accepted reference values [Pyykko, Mol. Phys. 99, 1617 (2001)] are -81.65(80), 313(3), and -710(10) mb, respectively. Our values are lower for the heavier halogens, corroborating the recent work of van Stralen and Visscher [Mol. Phys. 101, 2115 (2003)], who obtained Q(127I)=-696(12) mb in a series of molecular calculations.  相似文献   

2.
Relativistic Dirac-Coulomb (DC) Hartree-Fock calculations are employed to obtain the analytic electric field gradient (EFG) on the antimony nucleus in the SbN, SbP, SbF, and SbCl molecules. The electronic correlation contribution to the EFGs is included with the DC-CCSD(T) and DC-CCSD-T approaches, also in the four-component framework, using a finite-difference method. The total EFG results, along with the experimental nuclear quadrupole coupling constants from microwave spectroscopy, allow to derive the nuclear quadrupole moments of (121)Sb and (123)Sb, respectively, as -543(11) and -692(14) mb.  相似文献   

3.
The nuclear quadrupole moment for (197)Au has been determined on the base of the state-of-art relativistic molecular calculations. The experimental shifts in the nuclear coupling constants in the series of molecules AuF, XeAuF, KrAuF, ArAuF, (OC)AuF, and AuH have been combined with highly accurate determinations of the electric field gradient (EFG) at the gold nucleus, obtained by molecular relativistic Dirac-Coulomb-Gaunt Hartree-Fock calculations. The electronic correlation contribution to the EFG is included with the CCSD(T) and CCSD-T approaches, also in the four-component framework, using a finite-difference method. In order to estimate the accuracy of their approach the authors have thoroughly investigated the convergence of the results with respect to the basis set employed and the size of the correlated orbital space. The effect of the full Breit electron-electron interaction on the nuclear quadrupole moment of gold has also been considered explicitly for the AuF molecule. They obtain for (197)Au a nuclear quadrupole moment of 510+/-15 mb, which deviates by about 7% from the currently accepted muonic value.  相似文献   

4.
Rhenium-185/187 solid-state nuclear magnetic resonance (SSNMR) experiments using NaReO(4) and NH(4)ReO(4) powders provide unambiguous evidence for the existence of high-order quadrupole-induced effects (HOQIE) in SSNMR spectra. Fine structure, not predicted by second-order perturbation theory, has been observed in the (185/187)Re SSNMR spectrum of NaReO(4) at 11.75 T, where the ratio of the Larmor frequency (ν(0)) to the quadrupole frequency (ν(Q)) is ~2.6. This is the first experimental observation that under static conditions, HOQIE can directly manifest in SSNMR powder patterns as additional fine structure. Using NMR simulation software which includes the quadrupole interaction (QI) exactly, extremely large (185/187)Re nuclear quadrupole coupling constants (C(Q)) are accurately determined. QI parameters are confirmed independently using solid-state (185/187)Re nuclear quadrupole resonance (NQR). We explain the spectral origin of the HOQIE and provide general guidelines that may be used to assess when HOQIE may impact the interpretation of the SSNMR powder pattern of any spin-5/2 nucleus in a large, axially symmetric electric field gradient (EFG). We also quantify the errors incurred when modeling SSNMR spectra for any spin-5/2 nucleus within an axial EFG using second-order perturbation theory. Lastly, we measure rhenium chemical shifts in the solid state for the first time.  相似文献   

5.
The electric field gradients (EFG) at the sites of the cations and the “central” atoms of the anions in the ionic crystals NaNO2, NaBF4, NaNO3 and Ba(NO3)2 are calculated by a method based on a combination of the semi-empirical INDO method for the charge distribution and the intramolecular EFG with a lattice summation in the framework of the extended multipole model. At some lattice sites the contribution of the induced dipole and quadrupole moments to the EFG is comparable with the contribution of the point charges. The charge distribution within the molecular ions is found by adjusting either the calculated asymmetry parameter η or the z-component of the EFG to the experimental value deduced from nuclear quadrupole coupling constants. These charge distributions are in good agreement with those gained from INDO calculations. The calculated and experimental quadrupole coupling constants of nuclei in anions and cations are compared.  相似文献   

6.
We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL(2) (L = CH(3), Cl, Br, I) and trigonal planar [HgCl(3)](-) compounds using four-component relativistic Dirac-Coulomb (DC) and non-relativistic (NR) calculations at the Hartree-Fock (HF), DFT, MP2 and coupled cluster (CC) levels. The relativistic and electron correlation contributions to EFG have opposite signs and are not additive, demonstrating the importance of taking into account relativistic and electron correlation contributions on an equal footing. DC-MP2 overestimates the electron correlation correction by 0.48-0.56 a.u. for Hg-halides and by 0.8 a.u. for Hg(CH(3))(2), respectively, while DC-CCSD underestimates the correlation correction by 0.57-0.66 a.u. compared to the reference DC-CCSD-T data. EFGs obtained at the DC-DFT level vary considerably with the functional; DC-CAMB3LYP and DC-BH&H reproduce DC-CCSD-T results within 0.08-0.24 a.u. (1%-3%) for Hg(CH(3))(2) and Hg-halides, respectively. An updated value of the nuclear quadrupole moment of the I = 5/2 excited state of (199)Hg, Q((199)Hg) = 0.675(12) b is derived from the literature. This value compares well with that derived from our calculated EFG at the DC-CCSD-T level and the experimental data for Hg(CH(3))(2); Q((199)Hg) = 0.650 b.  相似文献   

7.
Three sets of crystal-structure data reported for AlVO(4) from two powder-XRD studies and a density functional theory (DFT) investigation, employing the Vienna ab initio simulation package (VASP), have been examined and refined using the DFT structure-optimization scheme implemented in the WIEN2k software. The crystal structures are evaluated on the basis of (27)Al and (51)V quadrupole coupling parameters recently reported for AlVO(4), employing the corresponding electric-field gradient (EFG) tensor elements obtained from the DFT calculations. The DFT calculations provide a reliable assignment of the (27)Al/(51)V resonances from three distinct Al and three V environments to the specific crystallographic sites in the asymmetric unit for AlVO(4). An improved agreement between experimental quadrupole tensor elements and calculated EFG tensors is achieved after the DFT structure optimizations and consistent results are obtained using the three different structures as starting points. The improvement of the structural data is also supported by an evaluation of the Al-O and V-O bond lengths before and after DFT structure optimization. The (51)V nuclear quadrupole moment, |Q((51)V)| = 4.8 +/- 0.1 fm(2), derived from the present analysis, represents a value of higher accuracy than earlier reported Q((51)V) values. The origin of the (27)Al and (51)V EFGs are investigated by an evaluation of the orientations of the EFG tensors in the crystal frame and by an examination of the individual contributions from the valence electrons and the surrounding lattice. The latter investigation shows that the magnitude and orientation of the tensors are largely determined by the p-p((27)Al) and p-p, d-d((51)V) orbital contributions to the valence electrons, while the lattice part only gives a minor contribution for both nuclei.  相似文献   

8.
33S NMR parameters (chemical shifts and linewidths) in 2-substituted sodium ethanesulfonates, XCH2CH2SO3Na (X = H, CH3, OH, SH, NH2, Cl, Br, NH3+) depend upon the electronic properties of substituents. To explain experimental results and obtain additional information on the origin of the observed substituent effect (SE), sulfur isotropic absolute shielding constants have been calculated at DFT level of theory (B3LYP/6-311++G(2d,p)) by gauge-including atomic orbitals (GIAO) method. Data have been interpreted with the aid of natural bond orbital (NBO) method and natural chemical shielding (NCS) analysis. It has been demonstrated that in the class of compounds considered the diamagnetic contribution to sulfur-shielding constant is constant and the observed upfield shift of 33S resonance induced by electron-withdrawing substituents (reverse chemical shift effect) can be related to variations of the paramagnetic contribution. Substituents with different electronic properties cause variations in the polarization of S-C and S-O bonds of the -C-SO3- moiety thus determining changes of the electron density at sulfur nucleus and consequently the expansion or contraction of 3p sulfur orbitals. Also oxygen lone-pairs and sulfur core 2p electrons can play an active role in determining the paramagnetic contribution to sulfur shielding. With regard to linewidth variations, they can be ascribed primarily to changes in the nuclear quadrupole coupling constant values. B3LYP/6-311++G(2d,p) method allows obtaining a good reproducibility of SE on the electric field gradient (EFG) at sulfur, although its values tend to be underestimated significantly. Moreover, 17O shielding constants have been calculated.  相似文献   

9.
In this paper, we analyse the effects on the nuclear quadrupole coupling behaviour of 2H and 17O nuclei of a shift in H-bond character from asymmetric to symmetric. Using ab initio methods, the coupling amplitudes (nuclear quadrupole coupling constant e2qQ/h) coupling anisotropies (asymmetry parameter η), and orientations of the electric field gradient (EFG) principal axis (PA) system of the H-bonded deuterium and oxygen nuclei in the formic acid dimer and related monomers, and the deuterium diformate anion are calculated. In addition, the relative contributions to the 2H and 17O EFGs of nuclear and electronic terms, and also the convergence of the EFG as a function of contributions from increasingly distant nuclei in the molecule are investigated. The trends in the calculated 17O EFGs on going from an asymmetric to a symmetric H-bonded environment are correlated with experimental nqr data in order to establish the hitherto unknown e2qQ/h sign, EFG assignments and PA orientation of symmetrically H-bonded oxygen. The possibility that the e2qQ/h value of deuterium is negative for symmetric H bonds is discussed, and difficulties in the computation of 2H EFGs for symmetric - as distinct from asymmetric - H-bonded systems are pointed out. In strong disagreement with assumptions in the literature, it is found that nearest neighbour terms do not dominate the 2H EFG in symmetrically H-bonded systems.  相似文献   

10.
We have examined the antiferromagneticly coupled bis(μ-oxo)dimanganese(IV) complex [Mn(2)O(2)(salpn)(2)] (1) with (55)Mn solid-state NMR at cryogenic temperatures and first-principle theory. The extracted values of the (55)Mn quadrupole coupling constant, C(Q), and its asymmetry parameter, η(Q), for 1 are 24.7 MHz and 0.43, respectively. Further, there was a large anisotropic contribution to the shielding of each Mn(4+), i.e. a Δσ of 3375 ppm. Utilizing broken symmetry density functional theory, the predicted values of the electric field gradient (EFG) or equivalently the C(Q) and η(Q) at ZORA, PBE QZ4P all electron level of theory are 23.4 MHz and 0.68, respectively, in good agreement with experimental observations.  相似文献   

11.
A computational study at the level of density functional theory (DFT) employing 6-311++G** standard basis set was carried out to evaluate nuclear quadrupole resonance (NQR) spectroscopy parameters in cytosine-5-acetic acid (C5AA). Since the electric field gradient (EFG) tensors are very sensitive to the electrostatic environment at the sites of quadruple nuclei, the most possible interacting molecules with the target one were considered in a five-molecule model system of C5AA using X-ray coordinates transforming. The hydrogen atoms positions were optimized and two model systems of original and H-optimized C5AA were considered in NQR calculations. The calculated EFG tensors at the sites of (17)O, (14)N, and (2)H nuclei were converted to their experimentally measurable parameters, quadrupole coupling constants and asymmetry parameters. The evaluated NQR parameters reveal that the nuclei in original and H-optimized systems contribute to different hydrogen bonding (HB) interaction. The comparison of calculated parameters between optimized isolated gas-phase and crystalline monomer also shows the relationship between the structural deformation and NQR parameters in C5AA. The basis set superposition error (BSSE) calculations yielded no significant errors for employed basis set in the evaluation of NQR parameters. All the calculations were performed by Gaussian 98 package of program.  相似文献   

12.
13.
Based on the analysis of 23 aluminum sites from 16 fluoroaluminates, the present work demonstrates the strong potential of combining accurate NMR quadrupolar parameter measurements, density functional theory (DFT)-based calculations of electric field gradients (EFG), and structure optimizations as implemented in the WIEN2k package for the structural and electronic characterizations of crystalline inorganic materials. Structure optimizations are essential for compounds whose structure was refined from usually less accurate powder diffraction data and provide a reliable assignment of the 27Al quadrupolar parameters to the aluminum sites in the studied compounds. The correlation between experimental and calculated EFG tensor elements leads to the proposition of a new value of the 27Al nuclear quadrupole moment Q(27Al) = 1.616 (+/-0.024) x 10(-29) m2. The DFT calculations provide the orientation of the 27Al EFG tensors in the crystal frame. Electron density maps support that the magnitude and orientation of the 27Al EFG tensors in fluoroaluminates mainly result from the asymmetric distribution of the Al 3p orbital valence electrons. In most cases, the definition of relevant radial and angular distortion indices, relying on EFG orientation, allows correlations between these distortions and magnitude and sign of the Vii.  相似文献   

14.
Hydrogen-bonding effects in the real crystalline structure of 9-methyladenine, 9-MA, were studied using calculated electric field gradient, EFG, and chemical shielding, CS, tensors for nitrogen and hydrogen nuclei via density functional theory. The calculations were carried out at the B3LYP and B3PW91 levels with the 6-311++G basis set via the Gaussian 98 package. Nuclear quadrupole coupling constants, C(Q), and asymmetry parameters, eta(Q), are reported for (14)N and (2)H. The chemical shielding anisotropy, Deltasigma, and chemical shielding isotropy, sigma(iso), are also reported for (15)N and (1)H. The difference between the calculated parameters of the monomer and heptameric layer-like cluster 9-MA shows how much H-bonding interactions affect the EFG and CS tensors of each nucleus. This result indicates that N(10) (imino nitrogen) has a major role in H-bonding interactions, whereas that of N(9) is negligible. There is good agreement between the present calculated parameters and reported experimental data. Although some discrepancies were observed, this could be attributed to the different conditions which were applied for calculation and the experiments.  相似文献   

15.
The electric field gradient (EFG) tensors at the deuterons in the water molecules in BeSO4 · 4D2O at 25°C are reported. The quadrupole coupling constants (e2Q/h) and asymmetry parameters (η) for the two independent deuterons are 181.1(4) and 194.8(3) kHz, and 0.226(4) and 0.123(3), respectively. The EFG tensor corresponding to the smallest e2qQ/h is considerably distorted by the beryllium ion, which causes a high η value as well as a deviation of the y-principal axis by 21.8(6)° from the normal to the water molecule plane. A redetermination of the EFG tensors at the deuterons in the water molecule in Li2SO4 · D2O at 25°C and ?110°C is also reported. The e2Q/h and η values for the two deuterons are 236.6(1.2) and 239.8(1.1) kHz, and 0.091(8) and 0.126(7), respectively, at ?110°C. The corresponding e2qQ/h and η values for the averaged EFG tensor at 25°C are 125.8(1.1) kHz and 0.813(13), respectively. The results are in good agreement with those from the pioneer work by Ketudat and Pound, 20 years ago on the same compound.  相似文献   

16.
High-resolution rotational spectra of the helium-pyridine dimer were obtained using a pulsed molecular beam Fourier transform microwave spectrometer. Thirty-nine R-branch (14)N nuclear quadrupole hyperfine components of a- and c-type dipole transitions were observed and assigned. The following spectroscopic parameters were obtained: rotational constants A=3875.2093(48) MHz, B=3753.2514(45) MHz, and C=2978.4366(81) MHz; quartic centrifugal distortion constants D(J)=0.124 08(55) MHz, D(JK)=0.1200(43) MHz, D(K)=-0.2451(25) MHz, d(1)=0.004 27(27) MHz, and d(2)=0.000 16(10) MHz; sextic centrifugal distortion constants H(J)=0.003 053(35) MHz, H(JK)=-0.006 598(47) MHz, and H(K)=0.004 11(59) MHz; (14)N nuclear quadrupole coupling constants chi(aa)((14)N)=-4.7886(76) MHz, chi(bb)((14)N)=1.4471(76) MHz, and chi(cc)((14)N)=3.3415(43) MHz. Our analyses of the rotational and (14)N quadrupole coupling constants show that the He atom binds perpendicularly to the aromatic plane of C(5)H(5)N with a displacement angle of approximately 7.0 degrees away from the c axis of the pyridine monomer, toward the nitrogen atom. Results from an ab initio structure optimization on the second order Moller-Plesset level are consistent with this geometry and gave an equilibrium well depth of 86.7 cm(-1).  相似文献   

17.
We report a solid-state (25)Mg NMR spectroscopic study of two magnesium-containing organic compounds: monopyridinated aqua(magnesium) phthalocyanine (MgPc.H(2)O.Py) and chlorophyll a (Chla). Each of these compounds contains a Mg(II) ion coordinating to four nitrogen atoms and a water molecule in a square-pyramidal geometry. Solid-state (25)Mg NMR spectra for MgPc.H(2)O.Py were obtained at 11.7 T (500 MHz for (1)H) for a (25)Mg-enriched sample (99.1% (25)Mg atom) using both Hahn-echo and quadrupole Carr-Purcell Meiboom-Gill (QCPMG) pulse sequences. Solid-state (25)Mg NMR spectra for Chla were recorded at (25)Mg natural abundance (10.1%) at 19.6 T (830 MHz for (1)H). The (25)Mg quadrupole parameters were determined from spectral analyses: MgPc.H(2)O.Py, C(Q) = 13.0 +/- 0.1 MHz and eta(Q) = 0.00 +/- 0.05; Chla, C(Q) = 12.9 +/- 0.1 MHz and eta(Q) = 1.00 +/- 0.05. This work represents the first time that Mg(II) ions in a square-pyramidal geometry have been characterized by solid-state (25)Mg NMR spectroscopy. Extensive quantum mechanical calculations for electric-field-gradient (EFG) and chemical shielding tensors were performed at restricted Hartee-Fock (RHF), density functional theory (DFT), and second-order M?ller-Plesset perturbation theory (MP2) levels for both compounds. Computed (25)Mg nuclear quadrupole coupling constants at the RHF and MP2 levels show a reasonable basis-set convergence at the cc-pV5Z basis set (within 7% of the experimental value); however, B3LYP results display a drastic divergence beyond the cc-pVTZ basis set. A new crystal structure for MgPc.H(2)O.Py is also reported.  相似文献   

18.
The nuclear-spin-rotation constants of fluoro- (HCF) and chloro- (HCCl) carbene, of the corresponding silylenes (HSiF and HSiCl), and of difluoro- and dichlorosilylene (SiF(2) and SiCl(2)) are quantum-chemically investigated employing the coupled-cluster singles and doubles model augmented by a perturbative treatment of triple excitations together with various sequences of correlation-consistent basis sets. Theoretical best estimates are obtained through consideration of corrections for core correlation and of zero-point vibrational contributions. In addition, nuclear quadrupole coupling constants for the chlorine containing species are determined. A thorough comparison with experiment is made.  相似文献   

19.
The cofactor (M-center) of the MoFe protein of nitrogenase, a MoFe(7)S(9):homocitrate cluster, contains six Fe sites with a (distorted) trigonal sulfido coordination. These sites exhibit unusually small quadrupole splittings, Delta E(Q) approximately 0.7 mm/s, and isomer shifts, delta approximately 0.41 mm/s. M?ssbauer and ENDOR studies have provided the magnetic hyperfine tensors of all iron sites in the S = 3/2 state M(N). To assess the intrinsic zero-field splittings and hyperfine parameters of the cofactor sites, we have studied with M?ssbauer spectroscopy two salts of the three-coordinated Fe(II) thiolate complex [Fe(SR)(3)](-) (R = C(6)H(2)-2,4,6-tBu(3)). One of the salts, [Ph(4)P][Fe(SR)(3)] x 2MeCN x C(7)H(8), 1, has a planar geometry with idealized C(3h) symmetry. This S = 2 complex has an axial zero-field splitting with D = +10.2 cm(-1). The magnetic hyperfine tensor components A(x) = A(y) = -7.5 MHz and A(z) = -29.5 MHz reflect an orbital ground state with d(z(2)) symmetry. A(iso) = (A(x) +A(y) +A(z))/3 = -14.9 MHz, which includes the contact interaction (kappa P = -21.9 MHz) and an orbital contribution (+7 MHz), which is substantially smaller than A(iso) approximately -22 MHz of the tetrahedral Fe(II)(S-R)(4) sites of both rubredoxin and [PPh(4)](2)[Fe(II)(SPh)(4)]. The largest component of the electric field gradient (EFG) tensor is negative, as expected for a d(z(2)) orbital. However, Delta E(Q) = -0.83 mm/s, which is smaller than expected for a high-spin ferrous site. This reduction can be attributed to a ligand contribution, which in planar complexes provides a large positive EFG component perpendicular to the ligand plane. The isomer shift of 1, delta = 0.56 mm/s, approaches the delta-values reported for the six trigonal cofactor sites. The parameters of 1 and their importance for the cofactor cluster of nitrogenase are discussed.  相似文献   

20.
Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (ηQ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N–HN and N–HO types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号