首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantum mechanical derived ab initio interaction potential for the argon dimer was tested in molecular simulations to reproduce the thermophysical properties of the vapor-liquid phase equilibria using the Gibbs ensemble Monte Carlo simulations as well as the liquid and supercritical equation of state using the NVT Monte Carlo simulations. The ab initio interaction potential was taken from the literature. A recently developed theory [R. Laghaei et al., J. Chem. Phys. 124, 154502 (2006)] was used to compute the effective diameters of argon in fluid phases and the results were subsequently applied in the generic van der Waals theory to compute the free volume of argon. The calculated densities of the coexisting phases, the vapor pressure, and the equation of state show excellent agreement with experimental values. The effective diameters and free volumes of argon are given over a wide range of densities and temperatures. An empirical formula was used to fit the effective diameters as a function of density and temperature. The computed free volume will be used in future investigations to calculate the transport properties of argon.  相似文献   

2.
The Gibbs ensemble molecular dynamics algorithm introduced in the preceding paper (paper I) [C. Bratschi and H. Huber, J. Chem. Phys. v126, 164104 (2007)] is applied to two recently published CO2 ab initio pair potentials, the Bock-Bich-Vogel and symmetry-adapted perturbation theory site-site potentials. The critical properties of these potentials are calculated for the first time. Critical values and points in the single and two-phase zones are compared with Monte Carlo results to demonstrate the accuracy of the molecular dynamics algorithm, and are compared with experiment to test the accuracy of the potentials. Pressure calculations in the liquid, gas, and supercritical states are carried out and are used to explain potential-related effects and systematic discrepancies. The best ab initio potential yields results in good agreement with experiment.  相似文献   

3.
A global potential energy surface for the water dimer is constructed using the modified Shepard interpolation scheme of Collins et al. According to this interpolation scheme, the energy at an arbitrary geometry is expressed as a weighted sum of Taylor series expansions from neighboring data points, where the energy and derivative data required are obtained from ab initio calculations. For some ab initio methods, errors are introduced into the second derivative matrix, either by numerical differencing of ab initio energies or numerical integration during the ab initio calculation. Therefore, we test the accuracy required of the second derivative data by truncation of the exact second derivatives to a series of approximate second derivatives, and assess the effect on the results of a quantum diffusion Monte Carlo (QDMC) simulation. Our results show that the calculated zero-point energy and wave function histograms converge to within the numerical uncertainty of the QDMC simulation by inclusion of either three significant figures or three decimal places in the second derivatives.  相似文献   

4.
Ab initio density functional theory (DFT), previously applied primarily at the second-order many-body perturbation theory (MBPT) level, is generalized to selected infinite-order effects by using a new coupled-cluster perturbation theory (CCPT). This is accomplished by redefining the unperturbed Hamiltonian in ab initio DFT to correspond to the CCPT2 orbital dependent functional. These methods are applied to the Be-isoelectronic systems as an example of a quasidegenerate system. The CCPT2 variant shows better convergence to the exact quantum Monte Carlo correlation potential for Be than any prior attempt. When using MBPT2, the semicanonical choice of unperturbed Hamiltonian, plays a critical role in determining the quality of the obtained correlation potentials and obtaining convergence, while the usual Kohn-Sham choice invariably diverges. However, without the additional infinite-order effects, introduced by CCPT2, the final potentials and energies are not sufficiently accurate. The issue of the effects of the single excitations on the divergence in ordinary OEP2 is addressed, and it is shown that, whereas their individual values are small, their infinite-order summation is essential to the good convergence of ab initio DFT.  相似文献   

5.
Infrared spectra of solutions of trifluoroethene and dimethyl ether, acetone, or oxirane in liquid krypton and liquid argon have been studied. For each Lewis base the formation of a 1:1 complex with the Lewis acid was observed. The C-H stretching of trifluoroethene being perturbed by a strong Fermi resonance, the complexes with trifuloroethene-d were also investigated and showed that in each case the hydrogen bond between the acid and base is of the traditional, red-shifting type. The structures of the complexes were investigated using ab initio calculations. These indicate that with dimethyl ether and acetone two different isomeres can be formed, but with a single one detected in the solution in each case. The Fermi resonance in the complex with unlabeled trifluoroethene is discussed using data derived form ab initio potential and dipole hypersurface calculations. The complexation enthalpies of the complexes were obtained from temperature dependent studies of the solutions and are discussed in relation to the ab initio complexation energies and Monte Carlo free energy perturbation calculations of solvent effects.  相似文献   

6.
From coupled-cluster theory and many-body perturbation theory we derive the local exchange-correlation potential of density functional theory in an orbital dependent form. We show the relationship between the coupled-cluster approach and density functional theory, and connections and comparisons with our previous second-order correlation potential [OEP-MBPT(2) (OEP-optimized effective potential)] [I. Grabowski, S. Hirata, S. Ivanov, and R. J. Bartlett, J. Chem. Phys. 116, 4415 (2002)]. Starting from a general theoretical framework based on the density condition in Kohn-Sham theory, we define a rigorous exchange-correlation functional, potential and orbitals. Specifying initially to second-order terms, we show that our ab initio correlation potential provides the correct shape compared to those from reference quantum Monte Carlo calculations, and we demonstrate the superiority of using Fock matrix elements or more general infinite-order semicanonical transformations. This enables us to introduce a method that is guaranteed to converge to the right answer in the correlation and basis set limit, just as does ab initio wave function theory. We also demonstrate that the energies obtained from this generalized second-order method [OEP-MBPT2-f] and [OEP-MBPT2-sc] are often of coupled-cluster accuracy and substantially better than ordinary Hartree-Fock based second-order MBPT=MP2.  相似文献   

7.
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.  相似文献   

8.
Coexistence properties for water near the critical point using several ab initio models were calculated using grand canonical Monte Carlo simulations with multiple histogram reweighting techniques. These models, that have proved to yield a good reproduction of the water properties at ambient conditions, perform rather well, improving the performance of a previous ab initio model. It is also shown that bulk geometry and dipole values, predicted by the simulation, can be used and a good approximation obtained with a polarizable rigid water model but not when polarization is excluded.  相似文献   

9.
10.
A new perturbation scheme based on the Barker-Henderson perturbation theory [J. Chem. Phys. 47, 4714 (1967)] is proposed to predict the thermodynamic properties of spherical molecules. Accurate predictions of second virial coefficients and vapor-liquid coexistence properties are obtained for a large variety of potential functions (square well, Yukawa, Sutherland, Lennard-Jones, Buckingham, Girifalco). New Gibbs ensemble Monte Carlo simulations of the generalized exp-m Buckingham potential are reported. An extension of the perturbation approach to mixtures is proposed, and excellent predictions of vapor-liquid equilibria are obtained for Lennard-Jones mixtures. The perturbation scheme can be applied to complex potential functions fitted to ab initio data to predict the properties of real molecules such as neon. The new approach can also be used as an auxiliary tool in molecular simulation studies, to efficiently optimize an intermolecular potential on macroscopic properties or match force fields based on different potential functions.  相似文献   

11.
A liquid with the interaction potential of hard spheres plus a square-well is analyzed using the Monte-Carlo technique. Numerical results for the perturbation theory series over a square-well potential are obtained in the form of the Barker and Henderson discrete representation. Approximating expressions for the correction to a liquid radial distribution function in the second order of perturbation theory are presented. The obtained results allow us to define this correction with a root-mean-square deviation of about 0.007. It is shown that the given approach provides a complete calculation in the second order of perturbation theory, and also the determination of the third order correction to the free energy for a liquid interacting with the potential of the Lennard-Jones type.  相似文献   

12.
Previously a new universal lambda-integration path and associated methodology was developed for the calculation of "exact" surface and interfacial free energies of solids. Such a method is in principle applicable to any intermolecular potential function, including those based on ab initio methods, but in previous work the method was only tested using a relatively simple embedded atom method iron potential. In this present work we apply the new methodology to the more sophisticated and more accurate modified embedded atom method (MEAM) iron potential, where application of other free- energy methods would be extremely difficult due to the complex many-body nature of the potential. We demonstrate that the new technique simplifies the process of obtaining "exact" surface free energies by calculating the complete set of these properties for the low index surface faces of bcc and fcc solid iron structures. By combining these data with further calculations of liquid surface tensions we obtain the first complete set of exact surface free energies for the solid and liquid phases of a realistic MEAM model system. We compare these predictions to various experimental and theoretical results.  相似文献   

13.
We report a full dimensional, ab initio based potential energy surface for CH(5) (+). The ab initio electronic energies and gradients are obtained in direct-dynamics calculations using second-order M?ller-Plesset perturbation theory with the correlation consistent polarized valence triple zeta basis. The potential energy and the dipole moment surfaces are fit using novel procedures that ensure the full permutational symmetry of the system. The fitted potential energy surface is tested by comparing it against additional electronic energy calculations and by comparing normal mode frequencies at the three lowest-lying stationary points obtained from the fit against ab initio ones. Well-converged diffusion Monte Carlo zero-point energies, rotational constants, and projections along the CH and HH bond lengths and the tunneling coordinates are presented and compared with the corresponding harmonic oscillator and standard classical molecular dynamics ones. The delocalization of the wave function is analyzed through comparison of the CH(5) (+) distributions with those obtained when all of the hydrogen atoms are replaced by (2)H and (3)H. The classical dipole correlation function is examined as a function of the total energy. This provides a further probe of the delocalization of CH(5) (+).  相似文献   

14.
Monte Carlo simulations of liquid methanol were performed using a refined ab initio derived potential which includes polarizability, nonadditivity, and intramolecular relaxation. The results present good agreement between the energetic and structural properties predicted by the model and those predicted by ab initio calculations of methanol clusters and experimental values of gas and condensed phases. The molecular level picture of methanol shows the existence of both rings and linear polymers in the methanol liquid phase.  相似文献   

15.
Using a potential-energy surface obtained in part from ab initio calculations, the H + CH3 → CH4 bimolecular rate constant at T = 300 K is determined from a Monte Carlo classical trajectory study. Representing the CH stretching potential with a standard Morse function instead ofthe ab initio curve increases the calculated rate constant by an order of magnitude. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio stretching potentials.Two properties of the H + CH3 α CH4 potential-energy surface which significantly affect the recombination rate constant are the shape of the CH stretching potential and the attenuation of the H3CH bending frequencies. Ab initio calculations with a hierarchy of basis sets and treatment of electron correlation indicate the latter is properly described [13]. The exact shape of the CH stretching potential is not delineated by the ab initio calculations, since the ab initio calculations are not converged for bond lengths of 2.0–3.0 Å [12]. However, the form of this stretching potential deduced from the highest-level ab initio calculations, and fit analytically by eq. (2), is significantly different from a Morse function. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio CH stretching potentials. This indicates that the actual CH potential energy curve lies between the Morse and ab initio curves. This is consistent with the finding that potential energy curves for diatomics are not well described by a Morse function [12].  相似文献   

16.
17.
Density functional theory (B3LYP) and ab initio (MP2) methods with the 6-31G(d,p) basis set are used to study the mechanisms for the hydrolysis of N-(2-oxo-1,2-dihydro-pyrimidinyl) formamide (PFA) in the gas phase. The direct and the water-assisted hydrolysis processes are considered, involving one and two water molecules, respectively. Three different pathways are explored in each case. In the first pathway, the O atom of water first attacks at the C atom of amide while one H atom of water transfers toward the oxygen of amide, leading to an intermediate of tetrahedral coordinated carbon with two OH groups. In the subsequent step, the hydroxyl H atom transfers to the N atom of pyrimidine ring and the C-N covalent bond of amide dissociates simultaneously. In the second path, the O and one H of water attack at the C of amide and the N of pyrimidine ring, respectively, while the C-N bond of amide dissociates. In the third path, three processes occur simultaneously: the O of water attacks at the C of amide, one H atom attacks at the N of amide, and the C-N bond of amide is broken. It is shown that the second pathway is favored for the direct hydrolysis while the first pathway is favored for the water-assisted hydrolysis. It is also shown that the water-assisted hydrolysis is slightly more favorable than the direct hydrolysis. Moreover, solvent effects on five pathways are evaluated with Monte Carlo simulation (MC) and free energy perturbation methods. It is shown that the solvent water slightly reduces the energy barrier in each pathway. The first pathway in the water-assisted hydrolysis remains the most favorable when the solvent effects of bulk water are taken into account.  相似文献   

18.
An efficient approach is described for using accurate ab initio calculations to determine the rates of elementary condensation and evaporation processes that lead to nucleation of aqueous aerosols. The feasibility of the method is demonstrated in an application to evaporation rates of water dimer at 230 K. The method, known as ABC-FEP (ab initio/classical free energy perturbation), begins with a calculation of the potential of mean force for the dissociation (evaporation) of small water clusters using a molecular dynamics (MD) simulation with a model potential. The free energy perturbation is used to calculate how changing from the model potential to a potential calculated from ab initio methods would alter the potential of mean force. The difference in free energy is the Boltzmann-weighted average of the difference between the ab initio and classical potential energies, with the average taken over a sample of configurations from the MD simulation. In principle, the method does not require a highly accurate model potential, though more accurate potentials require fewer configurations to achieve a small sampling error in the free energy perturbation step. To test the feasibility of obtaining accurate potentials of mean force from ab initio calculations at a modest number of configurations, the free energy perturbation method has been used to correct the errors when some standard models for bulk water (SPC, TIP4P, and TIP4PFQ) are applied to water dimer. To allow a thorough exploration of sampling issues, a highly accurate fit to results of accurate ab initio calculations, known as SAPT-5s, as been used a proxy for the ab initio calculations. It is shown that accurate values for a point on the potential of mean force can be obtained from any of the water models using ab initio calculations at only 50 configurations. Thus, this method allows accurate simulations of small clusters without the need to develop water models specifically for clusters.  相似文献   

19.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

20.
A simple and efficient internal-coordinate importance sampling protocol for the Monte Carlo computation of (up to fourth-order) virial coefficients ?B(n) of atomic systems is proposed. The key feature is a multivariate sampling distribution that mimics the product structure of the dominating pairwise-additive parts of the ?B(n). This scheme is shown to be competitive over routine numerical methods and, as a proof of principle, applied to neon: The second, third, and fourth virial coefficients of neon as well as equation-of-state data are computed from ab initio two- and three-body potentials; four-body contributions are found to be insignificant. Kirkwood-Wigner quantum corrections to first order are found to be crucial to the observed agreement with recent ab initio and experimental reference data sets but are likely inadequate at very low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号