首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Numerical simulations of nonequilibrium chemical reactions in a pulsating air bubble have been performed for various ultrasonic frequencies (20 kHz, 100 kHz, 300 kHz, and 1 MHz) and pressure amplitudes (up to 10 bars). The results of the numerical simulations have indicated that the main oxidant is OH radical inside a nearly vaporous or vaporous bubble which is defined as a bubble with higher molar fraction of water vapor than 0.5 at the end of the bubble collapse. Inside a gaseous bubble which is defined as a bubble with much lower vapor fraction than 0.5, the main oxidant is H2O2 when the bubble temperature at the end of the bubble collapse is in the range of 4000-6500 K and O atom when it is above 6500 K. From the interior of a gaseous bubble, an appreciable amount of OH radical also dissolves into the liquid. When the bubble temperature at the end of the bubble collapse is higher than 7000 K, oxidants are strongly consumed inside a bubble by oxidizing nitrogen and the main chemical products inside a bubble are HNO2, NO, and HNO3.  相似文献   

2.
In the field of plasma modeling for electrical discharge machining (EDM) process, radiative losses are many times include in the energy equation using net emission coefficients (NEC). This is a sink term that accounts for the radiative emissions from the plasma to the surrounding environment. The purpose of this study is to calculate NECs for EDM arc plasmas. Two common plasma mediums, hydrocarbon oil and deionized water, are considered in this work assuming the EDM plasma is in local thermodynamic equilibrium, homogenous and isothermal. NECs are calculated for pressures of 1 and 10 bar for working temperatures commonly seen in EDM plasmas, 5,500–10,000 K. Continuum contributions such as molecular photodissociation, molecular photoionization, electron-molecule bremsstrahlung, electron-atom bremsstrahlung, ionic radiative recombination, and electron–ion bremsstrahlung are included in the calculation of NEC. In addition, the line radiations are calculated by overlapping lines considerations. Results show that radiative heat loss of EDM plasma in the deionized water dielectric medium is less than hydrocarbon oil one. Presented results for the NEC can serve as input data for various numerical models of electrical discharge machining process.  相似文献   

3.
Species distributions in a low-power arcjet thruster are investigated using a two-dimensional thermal and chemical nonequilibrium numerical model that incorporates the self-consistent effective binary diffusion coefficient approximation treatment of diffusion. Plasma flows in arcjet thruster with different input mole ratios of nitrogen to hydrogen are modelled. It is found that species separation due to nonequilibrium chemical kinetic processes occurs mainly in the regions where the dissociation and ionization of nitrogen and hydrogen species take place. The enrichment of nitrogen molecules at the fringes of the arc and hydrogen molecules near the anode wall of the thruster occurs mainly because the recombination processes of these two gases occur in different temperature ranges. In the expansion portion of the thruster nozzle, the gas residence times are of the same order as some chemical kinetic processes. Comparison between the nitrogen and hydrogen species profiles at the constrictor and thruster exit shows that the recombination of hydrogen ions and atoms are dominant kinetic processes near the thruster centreline, while the chemical reactions of nitrogen species are almost frozen in the high speed flow. The effects of temperature and pressure gradients on the species diffusion inside the arcjet thruster are also presented, with thermal diffusion found to have a much larger influence than pressure diffusion.  相似文献   

4.
We report the observation of sudden and dramatic changes in single-bubble sonoluminescence (SBSL) intensity (i.e., radiant power, phi(SL)) and spectral profiles at a critical acoustic pressure (P(c)) for solutions of sulfuric acid (H2SO4) containing mixtures of air and noble gas. Nitric oxide (NO), nitrogen (N2), and atomic oxygen emission lines are visible just below P(c). At P(c), very bright (factor of 7000 increase in phi(SL)) and featureless SBSL is observed when Ar is present. In addition, Ar lines are observed from a dimmed bubble that has been driven above P(c). These observations suggest that bright SBSL from H2SO4 is due to a plasma, and that molecular components of air suppress the onset of bright light emission through quenching mechanisms and endothermic processes. Determination of temperatures from simulations of the emission lines shows that air limits the heating during single-bubble cavitation. When He is present, phi(SL) increases by only a factor of 4 at P(c), and the SBSL spectrum is not featureless as for Ar, but instead arises from sulfur oxide (SO) and sulfur dioxide (SO2) bands. These differences are attributed to the high thermal conductivity and ionization potential of He compared to Ar.  相似文献   

5.
Theoretical approaches for radiative ionization (RI) in energetic collisions of highly stripped projectiles with target atoms are reviewed and set into context with related processes. The interrelation between RI and electron-nucleus bremsstrahlung is displayed with the help of inverse kinematics. Particular emphasis is laid on the forward-peak region of the electron spectrum resulting from target electrons which are slowed down to approximately zero velocity in the projectile frame of reference. The forward-peak intensity and shape for RI is contrasted to the one obtained from nonradiative capture to continuum. The ridge in the photon spectrum related to forward-peak electrons can unambiguously be identified in measured doubly differential photon emission cross sections resulting from ion–atom collisions at relativistic impact energies.  相似文献   

6.
By utilizing a fully floating double electrical probe system, the conductivity of a linear atmospheric pressure plasma jet, utilizing nitrogen as process gas, was measured. The floating probe makes it possible to measure currents in the nanoamp range, in an environment where capacitive coupling of the probes to the powered electrodes is on the order of several kilovolts. Using a chemical kinetic model, the production of reactive nitrogen oxide and hydrogen-containing species through admixture of ambient humid air is determined and compared to the measured gas conductivity. The chemical kinetic model predicts an enhanced diffusion coefficient for admixture of O2 and H2O from ambient air of 2.7 cm2 s?1, compared to a literature value of 0.21 cm2 s?1, which is attributed to rapid mixing between the plasma jets and the surrounding air. The dominant charge carriers contributing to the conductivity, aside from electrons, are NO+, NO2 ? and NO3 ?. Upon admixture of O2 and H2O, the dominant neutral products formed in the N2 plasma jet are O, NO and N2O, while O2(1Δg) singlet oxygen is the only dominant excited species.  相似文献   

7.
Time-resolved optical spectroscopy was used to examine chemical decomposition of RDX crystals shocked along the [111] orientation to peak stresses between 7 and 20 GPa. Shock-induced emission, produced by decomposition intermediates, was observed over a broad spectral range from 350 to 850 nm. A threshold in the emission response of RDX was found at about 10 GPa peak stress. Below this threshold, the emission spectrum remained unchanged during shock compression. Above 10 GPa, the emission spectrum changed with a long wavelength component dominating the spectrum. The long wavelength emission is attributed to the formation of NO2 radicals. Above the 10 GPa threshold, the spectrally integrated intensity increased significantly, suggesting the acceleration of chemical decomposition. This acceleration is attributed to bimolecular reactions between unreacted RDX and free radicals. These results provide a significant experimental foundation for further development of a decomposition mechanism for shocked RDX (following paper in this issue).  相似文献   

8.
In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where “quasi” means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble–bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission.  相似文献   

9.
Although reports have shown shifts in carbon dot emission wavelengths resulting from varying the excitation wavelength, this excitation‐dependent emission does not constitute true tuning, as the shifted peaks have much weaker intensity than their dominant emission, and this is often undesired in real world applications. We report for the first time the synthesis and photoluminescence properties of carbon dots whose peak fluorescence emission wavelengths are tunable across the entire visible spectrum by simple adjustment of the reagents and synthesis conditions, and these carbon dots are excited by white light. Detailed material characterization has revealed that this tunable emission results from changes in the carbon dots’ chemical composition, dictated by dehydrogenation reactions occurring during carbonization. These significantly alter the nucleation and growth process, resulting in dots with either more oxygen‐containing or nitrogen‐containing groups that ultimately determine their photoluminescence properties, which is in stark contrast to previous observations of carbon dot excitation‐dependent fluorescence. This new ability to synthesize broadband excitable carbon dots with tunable peak emissions opens up many new possibilities, particularly in multimodal sensing, in which multiple analytes and processes could be monitored simultaneously by associating a particular carbon dot emission wavelength to a specific chemical process without the need for tuning the excitation source.  相似文献   

10.
Bremsstrahlung photons associated with the α-decay of210Po were measured in α-γ coincidence measurements with Si and Ge detectors. Emission probabilities of the bremsstrahlung deduced for210Po were 10−11∼10−12/keV/sr/decay for 100≤E γ≤600 keV. It was found that the bremsstrahlung yields are much smaller than those predicted by a Coulomb acceleration model. This suggests that α-particles also emit photons inside the barrier. The bremsstrahlung spectrum was compared with a quasi-classical calculation in which the bremsstrahlung emission in tunneling motion of α-particles is taken into account. It is shown that the data can be interpreted as a consequence of destructive interference of radiative amplitudes outside the Coulomb barrier with those in tunneling.  相似文献   

11.
Theoretical models for Monte Carlo simulation of radiative processes, i.e. bremsstrahlung and characteristic x-ray emission, are presented. Possible strategies for simulating electron transport are briefly described. For mechanisms involving energy loss and angular deflections, difficulties for strict implementation of accurate numerical differential cross sections still remain due to the strong correlations between these variables. Practical solutions for the case of inelastic collisions and bremsstrahlung emission are described. Comparisons of simulation results with experimental data for several problems of interest in electron probe microanalysis are presented.  相似文献   

12.
A numerical simulation has been performed of a high-velocity nitrogen hydrogen plasma jet in air at atmospheric pressure including finite-rate chemical kinetics. Ions, electrons, and neutral atoms and molecules are treated as separate species in the plasma mixture. The chemical reactions considered are dissociation of molecular species, ionization of atomic species, charge exchange and dissociatioe recombination of nitrogen, and hydrogen-oxygen reactions. The calculational results show that strong departures from ionization and dissociation equilibrium develop in the downstream region as the chemical reactions freeze out at lower temperatures, in spite of the assumed chemical equilibrium at the nozzle exit. The calculations also show that ionized species are over-populated throughout the flow, while dissociated species in the core of the jet are underpopulated near the nozzle exit and become over-populated farther downstream. This initial underpopulation is due to diffusive depletion of dissociated species and enrichment of molecular species in the core of the jet.  相似文献   

13.
In the present review, the production of O radicals (oxygen atoms) in acoustic cavitation is focused. According to numerical simulations of chemical reactions inside a bubble using an ODE model which has been validated through studies of single-bubble sonochemistry, not only OH radicals but also appreciable amounts of O radicals are generated inside a heated bubble at the violent collapse by thermal dissociation of water vapor and oxygen molecules. The main oxidant created inside an air bubble is O radicals when the bubble temperature is above about 6500 K for a gaseous bubble. However, the concentration and lifetime of O radicals in the liquid water around the cavitation bubbles are unknown at present. Whether O radicals play some role in sonochemical reactions in the liquid phase, which are usually thought to be dominated by OH radicals and H2O2, should be studied in the future.  相似文献   

14.
The basic physical, physicochemical, and chemical processes occurring in the plasma-solution systems are considered. Data on correlation between the emission intensity of electrolyte-cathode glow discharge and the rate of nonequilibrium discharge-induced vaporization of the solution are presented. A mechanism for the appearance of the atomic emission threshold of metal atoms in the plasma zone is proposed. The role of chemically active species generated by ion bombardment in chemical processes occurring in solutions is shown.  相似文献   

15.
Experimental and theoretical results are reviewed concerning the photon polarization and spin asymmetry in the elementary process of bremsstrahlung. In electron–photon coincidence experiments using an unpolarized primary beam (300 keV) the electron–nucleus bremsstrahlung was found to be almost completely linearly polarized. The same behavior was found in electron–electron bremsstrahlung. By using a transversely polarized electron beam the photon emission asymmetry was measured for fixed direction of the outgoing electrons.  相似文献   

16.
High energy gamma-radiation (8 to 30 MeV) is gaining acceptance for radiation therapy of patients with deep cancers. This radiation is of sufficient energy to induce photonuclear activation of the elements in the human body. Our results of measurements of nitrogen and phosphorus in an anthropomorphic phantom, a cadaver, and a cancer patient with bremsstrahlung radiation from 15 MeV electrons demonstrate the feasibility of a method to monitor these two elements in the human body in vivo by measuring the radioactivity induced in these targets by photonuclear reactions.  相似文献   

17.
A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.  相似文献   

18.
The results of investigation into interaction between nonequilibrium plasma and polymers, including the mechanism of generation of active species in a direct-current discharge in oxygen, air, and oxygen mixtures with argon, are reported, and the formation behavior of gaseous products of the reactions of these species with polymer is discussed. The influence of the gaseous products on the physical characteristics of plasma and the rates of the processes involving electrons is considered.  相似文献   

19.
In champagne and carbonated beverages, bubble nucleation was mostly found to take place from tiny Taylor-like bubbles trapped inside immersed cellulose fibers stuck on the glass wall. The present paper complements a previous paper about the thorough examination of the bubble nucleation process in a flute poured with champagne (Liger-Belair et al. J. Phys. Chem. B 2005, 109, 14573). In this previous paper, a model was built that accurately reproduces the dynamics of these tiny Taylor-like bubbles that grow inside the fiber's lumen by diffusion of CO(2)-dissolved molecules. In the present paper, by use of the model recently developed, the frequency of bubble formation from cellulose fibers is accessed and linked with various liquid and fiber parameters, namely, the concentration c(L) of CO(2)-dissolved molecules, the liquid temperature theta, its viscosity eta, the ambient pressure P, the course of the gas pocket growing trapped inside the fiber's lumen before releasing a bubble, and the radius r of the fiber's lumen. The relative influence of the latter parameters on the bubbling frequency is discussed and supported with recent experimental observations and data.  相似文献   

20.
The recent experimental investigations on electron bremsstrahlung produced from impact of 2–30 keV electrons with thick solid and thin gaseous targets are reviewed. The theoretical models describing the energy and angular distributions of bremsstrahlung photons are discussed with their brief outlines and formulations to explain the experimental data. The results on thick target bremsstrahlung (TTB) spectra produced by keV electrons have suggested that there is a need to develop a comprehensive theory for accounting the solid state effects. It is further noted that the prediction of the modified KKD formula gives a reasonable agreement with the TTB data, whereas a semi-empirical formula gives a better fit to the data for thick targets. The available experimental data for dependence of double differential cross-sections of emitted photons on impact energy and their emission angles for gaseous atoms and molecules exhibit a good agreement with the theoretical calculations of Kissel et al., [1983. Shape functions for atomic-field bremsstrahlung from electrons of kinetic energy 1–500 keV on selected neutral atoms 1<Z<92. Atom. Data Nucl. Data Tables 28, 381–460].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号