首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
We introduce nitrile imine‐mediated tetrazole–ene cycloadditions (NITEC) in the presence of upconversion nanoparticles (UCNPs) as a powerful covalent coupling tool. When a pyrene aryl tetrazole derivative (λabs, max=346 nm) and UCNPs are irradiated with near‐infrared light at 974 nm, rapid conversion of the tetrazole into a reactive nitrile imine occurs. In the presence of an electron‐deficient double bond, quantitative conversion into a pyrazoline cycloadduct is observed under ambient conditions. The combination of NITEC and UCNP technology is used for small‐molecule cycloadditions, polymer end‐group modification, and the formation of block copolymers from functional macromolecular precursors, constituting the first example of a NIR‐induced cycloaddition. To show the potential for in vivo applications, through‐tissue experiments with a biologically relevant biotin species were carried out. Quantitative cycloadditions and retention of the biological activity of the biotin units are possible at 974 nm irradiation.  相似文献   

4.
Methylammonium lead iodide perovskite (MAPbI3), a prototype material for potentially high‐efficient and low‐cost organic–inorganic hybrid perovskite solar cells, has been investigated intensively in recent years. A study of low‐energy electron‐induced transformations in MAPbI3 is presented, performed by combining controlled electron‐impact irradiation with X‐ray photoelectron spectroscopy and scanning electron microscopy. Changes were observed in both the elemental composition and the morphology of irradiated MAPbI3 thin films as a function of the electron fluence for incident energies from 4.5 to 60 eV. The results show that low‐energy electrons can affect structural and chemical properties of MAPbI3. It is proposed that the transformations are triggered by the interactions with the organic part of the material (methylammonium), resulting in the MAPbI3 decomposition and aggregation of the hydrocarbon layer.  相似文献   

5.
A novel triphenylphosphine (TPP) treatment strategy was developed to prepare the near‐infrared emission CsPbI3 nanocrystal (NC)‐polymer composite thin‐film luminescent solar concentrators (LSCs) featuring high absolute photoluminescence quantum yield (PLQY), low reabsorption, and high stability. The PL emission of the LSCs is centered at about 700 nm with 99.4±0.4 % PLQY and narrow full width at half maximum (FWHM) of 75 meV (30 nm). Compared with LSCs prepared with classic CsPbI3 NCs, the stability of the LSCs after TPP treatments has been greatly improved, even after long‐term (30 days) immersion in water and strong mercury‐lamp irradiation (50 mW cm?2). Owing to the presence of lone‐pair electrons on the phosphorus atom, TPP is also used as a photoinitiator, with higher efficiency than other common photoinitiators. Large‐area (ca. 75 cm2) infrared LSCs were achieved with a high optical conversion efficiency of 3.1 % at a geometric factor of 10.  相似文献   

6.
In several photovoltaic (PV) technologies, the presence of electronic defects within the semiconductor band gap limit the efficiency, reproducibility, as well as lifetime. Metal halide perovskites (MHPs) have drawn great attention because of their excellent photovoltaic properties that can be achieved even without a very strict film‐growth control processing. Much has been done theoretically in describing the different point defects in MHPs. Herein, we discuss the experimental challenges in thoroughly characterizing the defects in MHPs such as, experimental assignment of the type of defects, defects densities, and the energy positions within the band gap induced by these defects. The second topic of this Review is passivation strategies. Based on a literature survey, the different types of defects that are important to consider and need to be minimized are examined. A complete fundamental understanding of defect nature in MHPs is needed to further improve their optoelectronic functionalities.  相似文献   

7.
Optical imaging plays a growing role in modern biomedical research and clinical applications due to its high sensitivity, superb spatiotemporal resolution and minimal hazards. Lanthanide‐doped nanoparticles (LDNPs), as a classical category of luminescent materials, exhibit promising photostability, near‐infrared (NIR)‐excited frequency up‐/down‐converting capabilities, emission fine‐tuning and multispectral features, which have greatly promoted the endeavors of deeper and clearer diagnostics in complex living conditions. This review focuses on the recent advances of LDNP‐based multipurpose imaging studies using upconversion, downshifting, lifetime, photoacoustic and multimodal nanoprobes in the NIR (650–1000 nm) and the second near‐infrared window (NIR‐II, 1000–1700 nm). The principle and design of various functional, activatable, multiplexing or multimodal lanthanide‐imaging nanoprobes (LINPs) as well as representative biophotonic applications are summarized in detail. In addition, the future perspectives and challenges for facilitating LINPs to clinical translations are discussed.  相似文献   

8.
9.
The enthusiasm for research on lanthanide‐doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.  相似文献   

10.
Dye‐sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.  相似文献   

11.
As extremely important inorganic materials, metal oxides play an irreplaceable role in solid perovskite solar cells. In this review, the preparation methods of metal oxides, their effects on the perovskite optoelectronic devices incorporated with the energy level compatibility of perovskite materials are provided. Finally, the possible reactions between interfaces during growth progress as well as passivation mechanism of some metal oxides to perovskite materials are discussed. The physical, chemical, and electrical properties of functional metal oxides endow the enhancement of the efficiency and stability of perovskite photovoltaic devices.  相似文献   

12.
The ability to effectively transfer photoexcited electrons and holes is an important endeavor toward achieving high‐efficiency solar energy conversion. Now, a simple yet robust acid‐treatment strategy is used to judiciously create an amorphous TiO2 buffer layer intimately situated on the anatase TiO2 surface as an electron‐transport layer (ETL) for efficient electron transport. The facile acid treatment is capable of weakening the bonding of zigzag octahedral chains in anatase TiO2, thereby shortening staggered octahedron chains to form an amorphous buffer layer on the anatase TiO2 surface. Such amorphous TiO2‐coated ETL possesses an increased electron density owing to the presence of oxygen vacancies, leading to efficient electron transfer from perovskite to TiO2. Compared to pristine TiO2‐based devices, the perovskite solar cells (PSCs) with acid‐treated TiO2 ETL exhibit an enhanced short‐circuit current and power conversion efficiency.  相似文献   

13.
14.
ABX3(A为甲胺、甲脒等有机离子或铯离子,B为铅或锡等金属离子,X为溴、碘等卤化物离子)卤化物钙钛矿材料具有优异的光电特性,是当前太阳能电池研究的前沿和热点之一。然而,这类太阳能电池普遍面临含毒性元素铅和稳定性差等问题,极大地阻碍了钙钛矿太阳能电池商业化应用进程。因此,发展新型高效无铅钙钛矿太阳能电池势在必行。本文评述了环境友好型无铅卤化物钙钛矿太阳能电池的最新研究动态和进展,探讨了该类太阳能电池的制备、性能及其稳定性等问题,展望了其未来发展趋势。  相似文献   

15.
为了获得高效率的染料敏化太阳能电池,其光阳极应该具有大的比表面积,以吸附足量的染料,获得很强的光捕获能力.从这个角度而言,将具有很大比表面积的金属有机框架材料引入到染料敏化太阳能电池的体系中,无疑是一种有益的探索.本文简介了金属有机框架材料在光伏领域的应用,并重点介绍了我们课题组在利用金属有机框架材料方面进行的一些探索,包括光阳极薄膜的处理、利用金属有机框架材料作为前驱体制备光阳极材料和光散射层.最后,本文对金属有机框架材料应用于染料敏化太阳能电池中的局限性及前景做了简要的展望.  相似文献   

16.
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials.  相似文献   

17.
Two simple methods to improve tin halide perovskite film structure are introduced, aimed at increasing the power conversion efficiency of lead free perovskite solar cells. First, a hot antisolvent treatment (HAT) was found to increase the film coverage and prevent electrical shunting in the photovoltaic device. Second, it was discovered that annealing under a low partial pressure of dimethyl sulfoxide vapor increased the average crystallite size. The topographical and electrical qualities of the perovskite films are substantively improved as a result of the combined treatments, facilitating the fabrication of tin‐based perovskite solar cell devices with power conversion efficiencies of over 7 %.  相似文献   

18.
19.
20.
有机光伏技术为太阳能的有效利用提供了一条重要途径。有机太阳能电池因制造成本低廉、材料质量轻、加工性能好、易于携带等优势而备受关注。提高有机太阳能电池的光电转换效率是目前乃至未来的研究重点。设计和合成适合的窄带隙的共轭聚合物是提高有机太阳能电池光电转化效率的核心。综述了近年来基于窄带隙的共轭聚合物的太阳能电池材料的设计、制备和器件性能研究进展,探讨了目前存在的亟待解决的关键基础问题和未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号