首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel organotin‐containing core‐cross‐linked knedels and shell‐cross‐linked knedels were first synthesized facilely from poly(styrene)‐b‐poly(acrylate acid) nanoparticles in different selective solvents [Tetrahydrofuran (THF)/H2O or THF/n‐octane] by using organotin compound 1,3‐dichloro‐tetra‐n‐butyl‐distannoxane as a new cross‐linker. The formation of the 1‐chloro‐3‐carboxylato‐tetra‐n‐butyl‐distannoxane layer in our cross‐linking reaction was supported by Fourier transform infrared (FT‐IR) and inductive coupled plasma emission spectrometer (ICP) analysis of the resulting shell‐cross‐linked knedels and core‐cross‐linked knedels. Transmission electron microscopy (TEM) study showed the spherical morphology and the size of the core‐cross‐linked knedels and shell‐cross‐linked knedel. Especially, the layer structure of the core‐cross‐linked knedels was clearly displayed in TEM image. The increase of extent of cross‐linking lead to the increasing of diameter for the shell‐cross‐linked knedels, whereas there was no significant effect on the core‐cross‐linked knedels. Dynamic light scattering (DLS) measurements gave hydrodynamic diameters of the core‐cross‐linked knedels that were in agreement with the TEM diameters. Moreover, the wall thickness of the shell layer of the core‐cross‐linked knedels could be easily modified by varying the block copolymer composition. Notably, the organotin‐containing core‐cross‐linked knedel exhibited highly efficient catalytic activity for the aqueous esterification reaction under nearly neutral conditions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Chemical cross‐linking combined with a subsequent enzymatic digestion and mass spectrometric analysis of the created cross‐linked products presents an alternative approach to assess low‐resolution protein structures. By covalently connecting pairs of functional groups within a protein or a protein complex a set of structurally defined interactions is built up. We synthesized the heterobifunctional amine‐reactive photo‐cross‐linker N‐succinimidyl p‐benzoyldihydrocinnamate as a non‐deuterated (SBC) and doubly deuterated derivative (SBDC). Applying a 1:1 mixture of SBC and SBDC for cross‐linking experiments aided the identification of cross‐linked amino acids in the mass spectra based on the characteristic isotope patterns of fragment ions. The cross‐linker was applied to the calcium‐binding protein calmodulin with a subsequent analysis of cross‐linked products by nano‐high‐performance liquid chromatography matrix‐assisted laser desorption/ionization tandem time‐of‐flight mass spectrometry (nano‐HPLC/MALDI‐TOF/TOF‐MS) and nano‐HPLC/nano‐electrospray ionization (ESI)‐LTQ‐Orbitrap‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Dual‐color fluorescence cross‐correlation spectroscopy (dcFCCS) allows one to quantitatively assess the interactions of mobile molecules labeled with distinct fluorophores. The technique is widely applied to both reconstituted and live‐cell biological systems. A major drawback of dcFCCS is the risk of an artifactual false‐positive or overestimated cross‐correlation amplitude arising from spectral cross‐talk. Cross‐talk can be reduced or prevented by fast alternating excitation, but the technology is not easily implemented in standard commercial setups. An experimental strategy is devised that does not require specialized hardware and software for recognizing and correcting for cross‐talk in standard dcFCCS. The dependence of the cross‐talk on particle concentrations and brightnesses is quantitatively confirmed. Moreover, it is straightforward to quantitatively correct for cross‐talk using quickly accessible parameters, that is, the measured (apparent) fluorescence count rates and correlation amplitudes. Only the bleed‐through ratio needs to be determined in a calibration measurement. Finally, the limitations of cross‐talk correction and its influence on experimental error are explored.  相似文献   

4.
We developed a simple route to prepare stabilized micelles and nanovesicles in aqueous solutions. A hydrophobic poly(succinimide) (PSI) was conjugated with the hydrophilic poly(ethylene glycol) (PEG) as a new type of cross‐linkable unit. Spherical aggregates were formed when dissolving the amphiphilic PEG682b‐PSI130 copolymer in aqueous solutions directly, and polymer nanovesicles were prepared by a precipitation‐dialysis method using PEG455b‐PSI130 copolymer. Bifunctional primary amine was added to the micelle or nanovesicle solutions to prepare cross‐linked structures via aminolysis reaction of the succinimide units. The degree of cross‐linking was controlled by adjusting the molar ratio of the cross‐linker to the succinimide units. Increasing the degree of cross‐linking leads to the compaction of the micelle core thus reduced diameter. The cross‐linked polymer micelles or nanovesicles maintained their morphology in extremely diluted solutions because of their structural stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
The use of mass spectrometry coupled with chemical cross‐linking of proteins has become one of the most useful tools for proteins structure and interactions studies. One of the challenges in these studies is the identification of the cross‐linked peptides. The interpretation of the MS/MS data generated in cross‐linking experiments using N‐hydroxy succinimide esters is not trivial once a new amide bond is formed allowing new fragmentation pathways, unlike linear peptides. Intermolecular cross‐linked peptides occur when two different peptides are connected by the cross‐linker and they yield information on the spatial proximity of different domains (within a protein) or proteins (within a complex). In this article, we report a detailed fragmentation study of intermolecular cross‐linked peptides, generated from a set of synthetic peptides, using both ESI and MALDI to generate the precursor ions. The fragmentation features observed here can be helpful in the interpretation and identification of cross‐linked peptides present in cross‐linking experiments and be further implemented in search engine's algorithms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The ability to cross‐couple secondary alkyl centers is fraught with a number of problems, including difficult reductive elimination, which often leads to β‐hydride elimination. Whereas catalysts have been reported that provide decent selectivity for the expected (non‐rearranged) cross‐coupled product with aryl or heteroaryl oxidative‐addition partners, none have shown reliable selectivity with five‐membered‐ring heterocycles. In this report, a new, rationally designed catalyst, Pd‐PEPPSI‐IHeptCl, is demonstrated to be effective in selective cross‐coupling reactions with secondary alkyl reagents across an impressive variety of furans, thiophenes, and benzo‐fused derivatives (e.g., indoles, benzofurans), in most instances producing clean products with minimal, if any, migratory insertion for the first time.  相似文献   

7.
The merging of photoredox and transition‐metal catalysis has become one of the most attractive approaches for carbon–carbon bond formation. Such reactions require the use of two organo‐transition‐metal species, one of which acts as a photosensitizer and the other one as a cross‐coupling catalyst. We report herein an exogenous‐photosensitizer‐free photocatalytic process for the formation of carbon–carbon bonds by direct acceleration of the well‐known nickel‐catalyzed Negishi cross‐coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross‐coupling chemistry that involve the direct visible‐light absorption of organometallic catalytic complexes.  相似文献   

8.
Stable C O linkages are generally unreactive in cross‐coupling reactions which mostly employ more electrophilic halides or activated esters (triflates, tosylates). Acetates are cheap and easily accessible electrophiles but have not been used in cross‐couplings because the strong C O bond and high propensity to engage in unwanted acetylation and deprotonation. Reported herein is a selective iron‐catalyzed cross‐coupling of diverse alkenyl acetates, and it operates under mild reaction conditions (0 °C, 2 h) with a ligand‐free catalyst (1–2 mol %).  相似文献   

9.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   

10.
The fragmentation behavior of a novel thiourea‐based cross‐linker molecule specifically designed for collision‐induced dissociation (CID) MS/MS experiments is described. The development of this cross‐linker is part of our ongoing efforts to synthesize novel reagents, which create either characteristic fragment ions or indicative constant neutral losses (CNLs) during tandem mass spectrometry allowing a selective and sensitive analysis of cross‐linked products. The new derivatizing reagent for chemical cross‐linking solely contains a thiourea moiety that is flanked by two amine‐reactive N‐hydroxy succinimide (NHS) ester moieties for reaction with lysines or free N‐termini in proteins. The new reagent offers simple synthetic access and easy structural variation of either length or functionalities at both ends. The thiourea moiety exhibits specifically tailored CID fragmentation capabilities—a characteristic CNL of 85 u—ensuring a reliable detection of derivatized peptides by both electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization (MALDI) tandem mass spectrometry and as such possesses a versatile applicability for chemical cross‐linking studies. A detailed examination of the CID behavior of the presented thiourea‐based reagent reveals that slight structural variations of the reagent will be necessary to ensure its comprehensive and efficient application for chemical cross‐linking of proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
We have developed a unique photo‐cross‐linking approach for immobilizing a variety of small molecules in a functional‐group‐independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on‐array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo‐cross‐linked microarrays of about 2000 natural products and drugs were constructed. This photo‐cross‐linked microarray format was found to be useful not merely for ligand screening but also to study the structure–activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo‐cross‐linking process.  相似文献   

12.
Crystallography and nuclear magnetic resonance are well‐established methods to study protein tertiary structure and interactions. Despite their usefulness, such methods are not applicable to many protein systems. Chemical cross‐linking of proteins coupled with mass spectrometry allows low‐resolution characterization of proteins and protein complexes based on measuring distance constraints from cross‐links. In this work, we have investigated cross‐linking by means of a heterobifunctional cross‐linker containing a traditional N‐hydroxysuccinimide (NHS) ester and a UV photoactivatable diazirine group. Activation of the diazirine group yields a highly reactive carbene species, with potential to increase the number of cross‐links compared with homobifunctional, NHS‐based cross‐linkers. Cross‐linking reactions were performed on model systems such as synthetic peptides and equine myoglobin. After reduction of the disulfide bond, the formation of intra‐ and intermolecular cross‐links was identified and the peptides modified with both NHS and diazirine moieties characterized. Fragmentation of these modified peptides reveals the presence of a marker ion for intramolecular cross‐links, which facilitates identification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Stereospecific synthesis of a family of novel (E)‐2‐aryl‐1‐silylalka‐1,4‐dienes or (E)‐4‐aryl‐5‐silylpenta‐1,2,4‐trienes via a cross‐coupling of (Z)‐silyl(stannyl)ethenes with allyl halides or propargyl bromide is described. In the reaction with allyl bromide, either a Pd(dba)2? CuI combination (dba, dibenzylideneacetone) in DMF or copper(I) iodide in DMSO–THF readily catalyzes or mediates the coupling reaction of (Z)‐silyl(stannyl)ethenes at room temperature, producing novel vinylsilanes bearing an allyl group β to silicon with cis ‐disposition in good yields. Allyl chlorides as halides can be used in the CuI‐mediated reaction. CuI alone much more effectively mediates the cross‐coupling reaction with propargyl bromide in DMSO–THF at room temperature compared with a Pd(dba)2? CuI combination catalysis in DMF, providing novel stereodefined vinylsilanes bearing an allenyl group β to silicon with cis ‐disposition in good yields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Carboxylate esters have many desirable features as electrophiles for catalytic cross‐coupling: they are easy to access, robust during multistep synthesis, and mass‐efficient in coupling reactions. Alkenyl carboxylates, a class of readily prepared non‐aromatic electrophiles, remain difficult to functionalize through cross‐coupling. We demonstrate that Pd catalysis is effective for coupling electron‐deficient alkenyl carboxylates with arylboronic acids in the absence of base or oxidants. Furthermore, these reactions can proceed by two distinct mechanisms for C?O bond activation. A Pd0/II catalytic cycle is viable when using a Pd0 precatalyst, with turnover‐limiting C?O oxidative addition; however, an alternative pathway that involves alkene carbopalladation and β‐carboxyl elimination is proposed for PdII precatalysts. This work provides a clear path toward engaging myriad oxygen‐based electrophiles in Pd‐catalyzed cross‐coupling.  相似文献   

15.
The gel properties of two‐component mixed polymer gels are investigated using a cascade model, which assumes that the gel network is formed via the self‐association of one of the two components and the cross‐association of the two components. The effects of the model parameters, such as the equilibrium constants and the functionalities for cross‐associations and self‐associations, on the composition dependence of the modulus and gel point curves are examined to elucidate the contribution of self‐associations to the gel network. The results show that the characteristics of self‐associations become pronounced when the equilibrium constant or the functionality for self‐associations is comparable to that for cross‐associations. The model is applied to analyze the critical gelling concentration data for xanthan/locust bean gum mixed gels, which shows significant self‐associations at high xanthan compositions. The resulting model curves agree well with the experimental data at all temperatures. The analysis of the temperature dependence of the best‐fit equilibrium constant yields values of enthalpy change that are consistent with previous findings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 80–91, 2008  相似文献   

16.
A Pd‐catalyzed direct cross‐coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd‐PEPPSI‐IPr] or [Pd‐PEPPSI‐IPent] as catalyst allows for the efficient one‐pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross‐coupling is the use of an ortho‐substituted bromide that undergoes lithium–halogen exchange preferentially.  相似文献   

17.
Solvents such as 1,1,1,3,3,3‐hexafluoroisopropanol (HFIP) with a high capacity for donating hydrogen bonds generate solvates that enter into selective cross‐coupling reactions of aryls upon oxidation. When electric current is employed for oxidation, reagent effects can be excluded and a decoupling of nucleophilicity from oxidation potential can be achieved. The addition of water or methanol to the electrolyte allows a shift of oxidation potentials in a specific range, creating suitable systems for selective anodic cross‐coupling reactions. The shift in the redox potentials depends on the substitution pattern of the substrate employed. The concept has been expanded from arene–phenol to phenol–phenol as well as phenol–aniline cross‐coupling. This driving force for selectivity in oxidative coupling might also explain previous findings using HFIP and hypervalent iodine reagents.  相似文献   

18.
Chemical cross‐linking combined with mass spectrometry (XL‐MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross‐linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross‐linkers containing an MS‐labile urea group, we now present the biuret‐based, CID‐MS/MS‐cleavable cross‐linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross‐linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.  相似文献   

19.
In this paper, a novel highly cross‐linked porous monolithic stationary phase having a long alkyl chain ligand (C16) was introduced and evaluated in CEC. The monolithic stationary phase was prepared by in situ copolymerization of 1‐hexadecene, trimethylolpropane trimethacrylate, and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in the presence of ternary porogenic solvent (cyclohexanol/1,4‐butanediol/water). In preparing monoliths, the ternary cross‐linker trimethylolpropane trimethacrylate was usually applied to preparing molecularly imprinted polymers or molecularly imprinted solid‐phase extraction, instead of binary cross‐linker ethylene dimethacrylate. 1‐Hexadecene was introduced to provide the non‐polar sites (C16) for chromatographic retention, while AMPS was used to generate the EOF for transporting the mobile phase through the monolithic capillary. Monolithic columns were prepared by optimizing proportion of porogenic solvent and AMPS content in the polymerization solution as well as the cross‐linkers. The monolithic stationary phases could generate a strong and stable EOF in various pH values and exhibit an RP‐chromatographic behavior for neutral compounds. For charged compounds, the separation was mainly based on the association of hydrophobic, electrostatic and electrophoretic interaction.  相似文献   

20.
A supramolecular cross‐linked cross‐linker, capable of introducing rotaxane cross‐links to vinyl polymers, has been developed for the rational synthesis of polyrotaxane networks. The experimental results reveal that the combination of an oligocyclodextrin (OCD) and a terminal bulky group‐tethering macromonomer (TBM) forms a polymer‐network structure having polymerizable moieties through supramolecular cross‐linking. Radical polymerization of a variety of typical vinyl monomers in the presence of the vinylic supramolecular cross‐linker (VSC) afforded the corresponding vinyl polymers cross‐linked through the rotaxane cross‐links (RCP) as transparent stable films in high yields under both photoinitiated and thermal polymerization conditions. A poly(N,N‐dimethylacrylamide)‐based hydrogel synthesized by using VSC, RCPDMAAm, displayed a unique mechanical property. The small‐angle X‐ray scattering (SAXS) results, indicating patterns characteristic of a polyrotaxane network, clearly suggested the presence and role of the rotaxane cross‐links. The confirmation of the introduction of rotaxane‐cross‐links into vinyl polymers strongly reveals the significant usefulness of VSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号