首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of cis‐ and trans‐isomers of hydrazone derivatives were separated and analyzed through HPLC with diode‐array detection and HPLC‐MS/MS using ESI and ion trap MS. Two single crystals (A‐5‐1 and C‐2‐1) of the trans‐isomers were obtained and determined using X‐ray crystallography data, and the cis‐ to trans‐isomerization under different conditions was discussed. Both of the cis‐ and trans‐isomers of A‐4 and A‐5 exhibited good insecticidal activities against Plutella xylostella.  相似文献   

2.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

3.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

4.
A short and efficient protocol for the asymmetric synthesis of cis‐ and trans‐3,4‐dihydro‐2,4,8‐trihydroxynaphthalen‐1(2H)‐one ( 1 and 2 , resp.) is described, with a phthalide annulation as the key step. Introduction of a OH substituent at position 2 was performed by Sharpless dihydroxylation of a silyl enol ether or by means of an N‐sulfonyloxaziridine. The absolute configuration of each isomer was determined via Mosher‐ester derivatives. By comparison with previously recorded CD spectra of our natural sample, we established that the natural trans‐ and cis‐isomers from Ceratocystis fimbriata sp. platani were the (?)‐(2S,4S)‐isomer (?)‐ 2 and the (+)‐(2S,4R)‐isomer (+)‐ 1 , respectively.  相似文献   

5.
The reaction of 9H‐fluorene‐9‐thione ( 1 ) with the cis‐ and trans‐isomers of dimethyl 1‐(4‐methoxyphenyl)aziridine‐2,3‐dicarboxylate (cis‐ and trans‐ 2 , resp.) in xylene at 110° yielded exclusively the spirocyclic cycloadduct with trans‐ and cis‐configurations, respectively (trans‐ and cis‐ 3 , resp.; Scheme 1). Analogously, less‐reactive thioketones, e.g., thiobenzophenone ( 5 ), and cis‐ 2 reacted stereoselectively to give the corresponding trans‐1,3‐thiazolidine‐2,4‐dicarboxylate (e.g., trans‐ 8 ; Scheme 2). On the other hand, the reaction of 5 and trans‐ 2 proceeded in a nonstereoselective course to provide a mixture of trans‐ and cis‐substituted cycloadducts. This result can be explained by an isomerization of the intermediate azomethine ylide. Dimethyl 1,3‐thiazolidine‐2,2‐dicarboxylates 14 and 15 were formed in the thermal reaction of dimethyl aziridine‐2,2‐dicarboxylate 11 with aromatic thioketones (Scheme 3). On treatment of 14 and 15 with Raney‐Ni in refluxing EtOH, a desulfurization and ring‐contraction led to the formation of azetidine‐2,2‐dicarboxylates 17 and 18 , respectively (Scheme 4).  相似文献   

6.
2‐Quinolone 2 , quinoline 3 , coumarin (2H‐1‐benzopyran‐ 2 ‐one) 5 , and 2H‐1‐benzopyran hemiacetal 6 were synthesized by photocyclization reaction of traans‐o‐aminocinnamoyl derivatives trans‐ 1 and trans‐o‐hydroxycinnamoyl derivatives trans‐ 4 . The reaction proceeds through trans‐cis isomerization followed by intramolecular cyclization.  相似文献   

7.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

8.
A series of new photo‐responsive amino acid‐derived azobenzenedicarboxylic acid derivatives (S)‐ 1 a – e were synthesized. Compound (S)‐ 1 a in the trans form exhibited no circular dichroism (CD) signal in DMF under ambient conditions, whereas intense Cotton effects were observed upon UV irradiation, indicating the formation of a chiral supramolecular structure in the cis form. The CD signals disappeared when trifluoroacetic acid (TFA) was added to the solution. The ester counterpart [(S)‐ 1 a′ ] showed no CD signal. Hydrogen bonding between the carboxy groups seemed necessary for constructing the supramolecular structure. The kinetic studies of cis to trans isomerization of (S)‐ 1 a demonstrated that the formation of a chiral supramolecule enhances the stability of the cis‐azobenzene structure. The ESI mass spectrum of stilbenedicarboxylic acid (S)‐ 4 , an analogue of (S)‐ 1 b , confirmed the formation of a dimer. A theoretical CD study revealed that (S)‐ 1 a in the cis form should be present as a cyclic chiral dimer.  相似文献   

9.
New diarylethene derivatives containing benzoxazole ( NBO ) and benzothiazole ( NBT ) have been synthesized. Light‐induced transcis isomerization of NBO and NBT took place in crystals, and only induced the needle‐like crystals of NBO to bend backwards away from the UV light source. The movement of the atoms was deemed to take place during the isomerization of NBO ; hence, strain would be produced and accumulated rapidly in the surface of crystals exposed to UV light. The uniform release of strain led to the bending of needle‐like crystals. The light‐induced transcis isomerization efficiency of NBT was too low to drive the motion of crystals, which might have originated from the large repulsion between naphthyl and benzothiazole. These results provide a new platform for the transformation of light energy into mechanical energy in molecular crystals through the unimolecular photochemical reaction of diarylethene derivatives.  相似文献   

10.
Photoreaction of trans‐2‐[4′‐(dimethylamino)styryl]benzothiazole (t‐DMASBT) under direct irradiation has been investigated in dioxane, chloroform, methanol and glycerol to understand the mechanism of photoisomerization. Contrary to an earlier report, isomerization takes place in all these solvents including glycerol. The results show that restriction on photoisomerization leads to the increase in fluorescence quantum yield in glycerol. The results are consistent with the theoretically simulated potential energy surface reported earlier using time‐dependent density functional theory (TDDFT) calculations. DFT calculations on cis isomers under isolated condition have suggested that cis‐B conformer is more stable than cis‐A conformer due to hydrogen‐bonding interaction. In the ground state, cis‐DMASBT is predominantly present as cis‐B. The fluorescence spectra of the irradiated t‐DMASBT suggested that photoisomerization follows not the adiabatic path as proposed by Saha et al., but the nonadiabatic path.  相似文献   

11.
The reactions of thiobenzamide 8 with diazo compounds proceeded via reactive thiocarbonyl ylides as intermediates, which underwent either a 1,5‐dipolar electrocyclization to give the corresponding five membered heterocycles, i.e., 4‐amino‐4,5‐dihydro‐1,3‐thiazole derivatives (i.e., 10a, 10b, 10c , cis‐ 10d , and trans‐ 10d ) or a 1,3‐dipolar electrocyclization to give the corresponding thiiranes as intermediates, which underwent a SNi′‐like ring opening and subsequent 5‐exo‐trig cyclization to yield the isomeric 2‐amino‐2,5‐dihydro‐1,3‐thiazole derivatives (i.e., 11a, 11b, 11c , cis‐ 11d , and trans‐ 11d ). In general, isomer 10 was formed in higher yield than isomer 11 . In the case of the reaction of 8 with diazo(phenyl)methane ( 3d ), a mixture of two pairs of diastereoisomers was formed, of which two, namely cis‐ 10d and trans‐ 10d , could be isolated as pure compounds. The isomers cis‐ 11d and trans‐ 11d remained as a mixture. In the reactions of the thioxohydrazone 9 with diazo compounds 3b and 3d , the main products were the alkenes 18 and 23 , respectively. Their formation was rationalized by a 1,3‐dipolar electrocyclization of the corresponding thiocarbonyl ylide and subsequent desulfurization of the intermediate thiiran. As minor products, 2,5‐dihydro‐1,3‐thiazol‐5‐amines 21 and 24 were obtained, which have been formed by 1,5‐dipolar electrocyclization of the thiocarbonyl ylide, followed by a 1,3‐shift of the dimethylamino group.  相似文献   

12.
α‐Methyl‐L ‐proline is an α‐substituted analog of proline that has been previously employed to constrain prolyl peptide bonds in a trans conformation. Here, we revisit the cistrans prolyl peptide bond equilibrium in derivatives of α‐methyl‐L ‐proline, such as N‐Boc‐protected α‐methyl‐L ‐proline and the hexapeptide H‐Ala‐Tyr‐αMePro‐Tyr‐Asp‐Val‐OH. In Boc‐α‐methyl‐L ‐proline, we found that both cis and trans conformers were populated, whereas, in the short peptide, only the trans conformer was detected. The energy barrier for the cistrans isomerization in Boc‐α‐methyl‐L ‐proline was determined by line‐shape analysis of NMR spectra obtained at different temperatures and found to be 1.24 kcal/mol (at 298 K) higher than the corresponding value for Boc‐L ‐proline. These findings further illuminate the conformationally constraining properties of α‐methyl‐L ‐proline.  相似文献   

13.
A tandem SN2‐Michael addition reaction has been developed for the synthesis of cis‐ and trans‐fused nitrogen and sulfur heterocycles from the cis and trans isomers of ethyl (±)‐(2E)‐3‐[2‐(iodomethyl)cyclo‐hexyl]‐2‐propenoate. Octahydro‐1H‐isoindole‐1‐acetic acid and octahydrobenzo[c]thiophene‐1‐acetic acid derivatives have been prepared and their stereochemistries elucidated using NMR and X‐ray crystallo‐graphic methods. Cyclization substrates for both the cis‐ and the trans‐fused rings are readily available in four steps from known compounds. Yields for the cyclization range from 80‐85% and stereochemical selec‐tivities with respect to the side chain vary from 12.5‐16:1 for the cis‐fused structures to 6‐7.5:1 for the trans‐fused structures. Steric interactions in the transition states for ring closure are proposed to rationalize the observed preferences.  相似文献   

14.
Azobenzene‐bridged β‐to‐β and meso‐to‐meso porphyrin nanorings were successfully synthesized by a palladium‐catalyzed Suzuki–Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di‐ and tetramers are in the alltrans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the alltrans configurations: the pure alltrans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump‐power‐dependent decay results revealed excitation energy transfer for azobenzene‐bridged zinc–porphyrin nanorings. The distances between porphyrin units of these azobenzene‐bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso‐to‐meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)–porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di‐ and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.  相似文献   

15.
Light‐induced transitions between the trans and cis isomer of triazatriangulenium‐based azobenzene derivatives on Au(111) surfaces were observed directly by scanning tunneling microscopy, allowing atomic‐scale studies of the photoisomerization kinetics. Although the azobenzene units in these adlayers are free‐standing and spaced at uniform distances of 1.26 nm, their photoswitching depends on the isomeric state of the surrounding molecules and, specifically, is accelerated by neighboring cis isomers. These collective effects are supported by ab initio calculations indicating that the electronic excitation preferably localizes on the n–π* state of trans isomers with neighboring cis azobenzenes.  相似文献   

16.
Within the quantum theory of atoms in molecules (QTAIM) framework we present a quantum topology phase diagram (QTPD) using the Poincaré–Hopf relation of a total of 17 all new QTAIM topologies of the cis‐ and trans‐isomers of the cyclic contryphan‐Sm peptide. The resultant QTPD consists of separate regions for the cis‐ and trans‐isomers that only overlap for topologies associated with the lowest energy minima of the cis‐ and trans‐isomers. We determine the QTAIM topologies of 29 “missing” isomers. A new, contracted formulation of the QTPD is presented, this contracted formulation includes the interamino acid bond critical points (BCPs) that link together the amino acid units, the disulphide bridge “pivot” BCP and side chain bonding interactions. The seven interamino acid BCPs linking the amino acid units coincide with the so‐called peptide backbone, the conventional qualitative approach to reduce the complexity of the peptide. We expand the interpretation of ellipticity to include the associated eigenvectors and find that higher values of the ellipticity ? are associated with a greater preference to conserve folding states. We quantify previous qualitative findings that suggested the disulfide bond is central to the folding behavior of the cyclic contryphan‐Sm peptide and why the cis‐isomer is the major form of the cyclic contryphan‐Sm peptide. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Novel cis‐ and trans‐2‐(p‐bromophenyl)‐5‐methylthiazolidin‐4‐ones, S,N‐containing heterocyclic compounds, were provided in a cis‐stereocomplementary and trans‐stereocomplementary synthetic manner. cis‐Selective cyclo‐condensation proceeded between 2‐sulfanylpropanoic acid (thiolactic acid) and an imine derived from 4‐bromobenzaldehyde and methylamine, whereas Ti(OiPr)4 and Ti(OiBu)4‐promoted trans‐selective cyclo‐condensation proceeded between benzyl 2‐sulfanylpropanoate and the imine. The obtained cis‐ and trans ‐ 2‐(p‐bromophenyl)‐5‐methylthiazolidin‐4‐ones were successfully converted to 2‐(3‐furyl)phenyl derivatives and bis(pinacolato)diborane derivatives utilizing Suzuki–Miyaura and Miyaura–Ishiyama cross‐coupling reactions, respectively, in an umpolung manner.  相似文献   

18.
The C=N double bond of certain cis‐ or trans‐cycloalkane and diexo‐ or diendo‐norbornane‐condensed pyridazinones was reduced with NaBH3CN. The cis‐ or trans nature of the starting cycloalkane derivatives was always retained in the saturated products, with a high degree of diastereoselectivity: the hydrogen on the new stereocenter and the annelational hydrogen next to the carbonyl always exhibited the same steric orientation. The stereostructures were determined by means of nmr measurements and confirmed by molecular modelling.  相似文献   

19.
Reported here is the first example of a 1,2‐dithienyldicyanoethene‐based visible‐light‐driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10‐fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.  相似文献   

20.
Reported here is the first example of a 1,2‐dithienyldicyanoethene‐based visible‐light‐driven chiral fluorescent molecular switch that exhibits reversible trans to cis photoisomerization. The trans form in solution almost completely transforms into the cis form, accompanied by a 10‐fold decrease in its fluorescence intensity within 60 seconds when exposed to green light (520 nm). The reverse isomerization proceeds upon irradiation with blue light (405 nm). When doped into commercially available achiral liquid crystal hosts, this molecular switch efficiently induces luminescent helical superstructures, that is, a cholesteric phase. The intensity of the circularly polarized fluorescence as well as the selective reflection wavelength of the induced cholesteric phases can be reversibly tuned using visible light of two different wavelengths. Optically rewritable photonic devices using cholesteric films containing this molecular switch are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号