首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钛硅分子筛中铝杂质对其性能的影响   总被引:3,自引:0,他引:3  
 以四丙基溴化铵为模板剂,以硅溶胶为硅源,采用水热合成法制备了不同铝杂质含量的钛硅分子筛,并系统考察了铝杂质对钛硅分子筛性能的影响.结果表明,原料中的铝杂质可促进钛硅分子筛晶化,但同时也引入了酸性中心;在丙烯环氧化反应中,铝杂质形成的酸性中心会催化环氧丙烷与溶剂的副反应;加入少量碱性添加物可抑制铝杂质的酸催化作用,提高环氧丙烷的选择性,但过量碱性添加物会使钛硅分子筛失活.  相似文献   

2.
A possibility of efficient urease adsorption on silicalite for the purpose of biosensor creation was investigated. The procedure of urease adsorption on silicalite is notable for such advantages as simple and fast performance and non‐use of toxic or auxiliary compounds. Optimal conditions for modifying transducer surfaces with silicalite and subsequent urease adsorption on these surfaces were selected. The working parameters of the created biosensor were optimized. The developed biosensor with adsorbed urease was characterized by good intra‐reproducibility (RSD – 4.5 %), improved inter‐reproducibility (RSD of urea determination is 9 %) and operational stability (less than 10 % loss of activity after 10 days). Besides, the developed method for enzyme adsorption on silicalite was compared with the traditional methods of urease immobilization in biosensorics. Working conditions of the produced biosensor (pH and ionic strength) were shown to be close to those of the biosensor based on urease immobilized in GA vapor. For these reasons, it was concluded that the method of enzyme adsorption on silicalite is well‐suited for biosensor standardization aimed at its further manufacture.  相似文献   

3.
Ti silicates, and in particular, titanium silicalite‐1 (TS‐1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H2O2 as an oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unclear. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as the main active species, has not been quantitatively discussed in the literature. We assess the structural features of defective Ti sites on the basis of outcomes of electronic spectroscopies, as interpreted through quantum mechanical simulation. Strong evidence is disclosed to support the fact that the most common defective Ti sites, often reported in the TS‐1 literature, are monomeric Ti centers that are embedded in the zeolite framework, and which have a distorted octahedral local symmetry.  相似文献   

4.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

5.
Adsorption of linear polyethylene and isotactic polypropylene on columns packed with zeolites ZSM‐5, Y, and silicalite was studied using high‐temperature liquid phase chromatography. Linear polyethylene was fully retained on a column packed with ZSM‐5 zeolite from non‐polar solvents, such as 1,1,2,2‐tetrachloroethane and 1,3,5‐trimethylbenzene at a temperature of 140°C. Partial adsorption on ZSM‐5 zeolite was found for polyethylene in 1,2,4‐trichlorobenzene and on silicalite from 1,2,4‐trichlorobenzene and 1,3,5‐trimethylbenzene. On the other hand, adsorption of polyethylene was not found from polar liquids, such as 2‐ethylhexyl acetate, cyclohexyl acetate, and cyclohexanone. Isotactic polypropylene was not adsorbed on any tested sorbent.  相似文献   

6.
A facile synthesis of 1,4‐dihydroquinazolines from 2‐aminobenzyl amine and carbon disulfide via dithiocarbamate performed at room temperature is reported. Corresponding S‐alkyl quinazoline derivatives were obtained from 1,4‐dihydroquinazolines in one‐pot reactions under the palladium reagents after addition of alkyl halides. The versatility of this synthetic protocol has been demonstrated with various halo benzenes. The products thus obtained have been characterized by MP, IR, 1H‐NMR, and mass spectroscopy.  相似文献   

7.
Colloidal silicalite‐1 zeolite was crystallized from a concentrated clear sol prepared from tetraethylorthosilicate (TEOS) and aqueous tetrapropylammonium hydroxide (TPAOH) solution at 95 °C. The silicate speciation was monitored by using dynamic light scattering (DLS), synchrotron small‐angle X‐ray scattering (SAXS), and quantitative liquid‐state 29Si NMR spectroscopy. The silicon atoms were present in dissolved oligomers, two discrete nanoparticle populations approximately 2 and 6 nm in size, and crystals. On the basis of new insight into the evolution of the different nanoparticle populations and of the silicate connectivity in the nanoparticles, a refined crystallization mechanism was derived. Upon combining the reagents, different types of nanoparticles (ca. 2 nm) are formed. A fraction of these nanoparticles with the least condensed silicate structure does not participate in the crystallization process. After completion of the crystallization, they represent the residual silicon atoms. Nanoparticles with a more condensed silicate network grow until approximately 6 nm and evolve into building blocks for nucleation and growth of the silicalite‐1 crystals. The silicate network connectivity of nanoparticles suitable for nucleation and growth increasingly resembles that of the final zeolite. This new insight into the two classes of nanoparticles will be useful to tune the syntheses of silicalite‐1 for maximum yield.  相似文献   

8.
Novel zirconium silicalite‐1 zeolite membrane was hydrothermally prepared on the mullite porous support at 150–185°C for 40–72 h by an "in situ" method using tetraethyl orthosilicate (TEOS), zirconium butoxide (ZBOT) and tetrapropylammonium hydroxide (TPAOH) as silica source, zirconium source and organic structure directing agent, respectively. X‐ray diffraction (XRD) patterns, fourier transformed infrared (FT‐IR) spectra, and inductively coupled plasma‐atomic emission spectrometry (ICP) of the accompanying zeolite powder confirmed that the zirconium was isomorphously incorporated into the zeolite framework. The surface chemical compositions of the obtained membrane were measured with an energy‐dispersive X‐ray spectral analyzer (EDS), and the membrane morphologies were observed by a scanning electron microscope (SEM). The results showed that the zeolite crystals growing on the support were zirconium silicalite‐1 zeolites, and the dense membrane layer was composed of the well inter‐growing zeolite crystals. The zirconium silicalite‐1 zeolite membrane, which was derived from the synthesis solution having a molar ratio of 1.00SiO2:0.01ZrO2:0.17TPAOH:120H2O, showed high ethanol permselectivity with a flux of 1.01 kg/(m2·h) accompanied with a separation factor of 73 for ethanol/water (5/95, w/w) system under a pervaporation condition at 60°C. Moreover, this membrane displayed pervaporation‐aided catalysis activity for iso‐propanol oxidation with hydrogen peroxide as oxidant, and the corresponding iso‐propanol conversion was 35%.  相似文献   

9.
Metal‐free heteroatom‐doped carbocatalysts with a high surface area are desirable for catalytic reactions. In this study, we found an efficient strategy to prepare nitrogen, phosphorus, and sulfur co‐doped hollow carbon shells (denote as NPS‐HCS) with a surface area of 1020 m2 g−1. Using a poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) shell as carbon source and N, P, S‐doping source, and the ZIF‐67 core as structural template as well as extra N‐doping source, NPS‐HCS were obtained with a high surface area and superhydrophilicity. All these features render the prepared NPS‐HCS a superior metal‐free carbocatalyst for the selective oxidation of aromatic alkanes in aqueous solution. This study provides a reliable and facile route to prepare doped carbocatalysts with enhanced catalytic properties.  相似文献   

10.
Metal‐free heteroatom‐doped carbocatalysts with a high surface area are desirable for catalytic reactions. In this study, we found an efficient strategy to prepare nitrogen, phosphorus, and sulfur co‐doped hollow carbon shells (denote as NPS‐HCS) with a surface area of 1020 m2 g?1. Using a poly(cyclotriphosphazene‐co‐4,4′‐sulfonyldiphenol) (PZS) shell as carbon source and N, P, S‐doping source, and the ZIF‐67 core as structural template as well as extra N‐doping source, NPS‐HCS were obtained with a high surface area and superhydrophilicity. All these features render the prepared NPS‐HCS a superior metal‐free carbocatalyst for the selective oxidation of aromatic alkanes in aqueous solution. This study provides a reliable and facile route to prepare doped carbocatalysts with enhanced catalytic properties.  相似文献   

11.
The adsorption of carbon dioxide and methane on silicalite pellets packed on a fixed bed has been studied. Equilibrium and kinetic measurements of the adsorption of carbon dioxide and methane have been performed, and a binary adsorption isotherm for carbon dioxide/methane mixtures has been obtained. A model based on the LDF approximation for the mass transfer has been used to describe the breakthrough curves obtained experimentally. A PSA cycle has been proposed for obtaining methane with purity higher than 98% from carbon dioxide/methane mixtures containing 38% and 50% methane, and its performance has been simulated using the proposed model. The simulation results show that silicalite can be a suitable adsorbent for employment in a PSA separation process for carbon dioxide removal from coalseam and landfill gases.  相似文献   

12.
We evaluated the accuracy of periodic density functional calculations for adsorption enthalpies of water, alkanes, and alcohols in silicalite and HZSM‐5 zeolites using a gradient‐corrected density functional with empirical dispersion corrections (PBE‐D) as well as a nonlocal correlation functional (vdW‐DF2). Results of both approaches agree in acceptable fashion with experimental adsorption energies of alcohols in silicalite, but the adsorption energies for n‐alkanes in both zeolite models are overestimated, by 21?46 kJ mol?1. For PBE‐D calculations, the adsorption of alkanes is exclusively determined by the empirical dispersion term, while the generalized gradient approximation‐DFT part is purely repulsive, preventing the molecule to come too close to the zeolite walls. The vdW‐DF2 results are comparable to those of PBE‐D calculations, but the latter values are slightly closer to the experiment in most cases. Thus, both computational approaches are unable to reproduce available experimental adsorption energies of alkanes in silicalite and HZSM‐5 zeolite with chemical accuracy. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Chiral C3‐symmetric trialkyl phosphites, derivatives, of (−)‐(1R,2S,5R)‐menthol, and (−)‐di‐O‐isopropylidene‐1,2:5,6‐α‐D ‐glucofuranose, have been studied as starting reagents for the preparation of chiral organophosphorus compounds. The reactions involve induction at the α‐carbon atom of substituted α‐alkylphosphonates. The stereoselectivity of the reaction depends on the structure of the starting compounds and the reaction conditions. The configurations of the alkylphosphonates were defined by means of NMR spectroscopy and by transformation into corresponding alkylphosphonic acids. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:138–143, 2000  相似文献   

14.
The first example of a biocatalytic [2,3]‐sigmatropic rearrangement reaction involving allylic sulfides and diazo reagents (Doyle–Kirmse reaction) is reported. Engineered variants of sperm whale myoglobin catalyze this synthetically valuable C?C bond‐forming transformation with high efficiency and product conversions across a variety of sulfide substrates (e.g., aryl‐, benzyl‐, and alkyl‐substituted allylic sulfides) and α‐diazo esters. Moreover, the scope of this myoglobin‐mediated transformation could be extended to the conversion of propargylic sulfides to give substituted allenes. Active‐site mutations proved effective in enhancing the catalytic efficiency of the hemoprotein in these reactions as well as modulating the enantioselectivity, resulting in the identification of the myoglobin variant Mb(L29S,H64V,V68F), which is capable of mediating asymmetric Doyle–Kirmse reactions with an enantiomeric excess up to 71 %. This work extends the toolbox of currently available biocatalytic strategies for the asymmetric formation of carbon–carbon bonds.  相似文献   

15.
The adsorption and separation of linear and branched alkanes in the isoreticular metal-organic framework IRMOF-1 have been investigated using Monte Carlo simulation. For pure linear alkanes (C1-nC5), the limiting adsorption properties exhibit linear behavior with the alkane carbon number; the long alkane is preferentially adsorbed over the short alkane at low fugacities, whereas the reverse is found at high fugacities. For pure branched alkanes (C5 isomers), the linear isomer adsorbs more than its branched analogue. The adsorbed amounts of pure alkanes in IRMOF-1 are substantially greater than in a carbon nanotube bundle and in silicalite. For a five-component mixture of C1 to nC5 linear alkanes, the long alkane adsorption first increases and then decreases with increasing fugacity, whereas short alkane adsorption continually increases and progressively replaces the long alkane at high fugacity due to the size entropy effect. For a three-component mixture of C5 isomers, the adsorption of each isomer increases with increasing fugacity until saturation, though there is less adsorption of the branched isomer due to the configurational entropy effect. The adsorption selectivity among the alkanes in IRMOF-1 is smaller than in a carbon nanotube bundle and in silicalite.  相似文献   

16.
Palladium‐catalyzed oxidative carbon–carbon bond‐forming annulations, that is, carbocyclization reactions, have recently emerged as efficient and atom‐economical routes to carbo‐ and heterocycles, whereby less functionalized substrates and fewer synthetic steps are needed to obtain a target molecule compared with traditional non‐oxidative carbon–carbon bond‐forming reactions. In this review, the synthetic efforts in palladium‐catalyzed oxidative carbocyclization reactions are summarized.  相似文献   

17.
以氨水做碱源胶态晶种导向法合成小晶粒TS-1分子筛   总被引:1,自引:0,他引:1  
TS-1分子筛具有MFI拓扑结构,因其独特的择形选择性和优异的催化氧化能力而广受关注.最早报道的TS-1合成方法采用大量四丙基氢氧化铵(TPAOH)作为有机结构导向剂, TPAOH价格昂贵,制约着TS-1分子筛大规模应用.开发廉价、环境友好的合成工艺是TS-1分子筛合成领域的重要课题.以价格相对较低的四丙基溴化铵(TPABr)代替TPAOH做有机结构导向剂,以氨水为碱源可合成TS-1分子筛,但产物晶粒尺寸远远大于以TPAOH做模板的合成结果,影响TS-1分子筛的传质和催化性能.因此,人们对该法进行了改进,选用有机胺作为碱源, TPABr为结构导向剂合成TS-1分子筛,但始终未能将其晶粒尺寸降至1μm以下.在合成体系中引入预先合成的TS-1分子筛或TS-1胶态前驱体作为晶种可以促进成核,缩短成核诱导期,有利于获得小晶粒尺寸的TS-1分子筛.此类方法往往需要辅助以大量有机胺等结构导向剂;胶态TS-1前驱体的制备需要特别小心以保证晶种中Ti的四配位状态,通常需要经历低温水解钛酸四丁酯(TBOT)和高温加热除醇等繁琐步骤.而胶态纯硅silicalite-1制备则相对简单,且已广泛用于导向合成同样具有MFI结构的ZSM-5沸石,但目前鲜有以silicalite-1做晶种合成TS-1分子筛的报道.基于此,本文以纯硅胶态silicalite-1为晶种,以氨水做碱源,辅助以少量TPABr做导向剂,合成了小晶粒TS-1分子筛,并以正己烯环氧化和环己酮氨肟化做探针反应考察了所得TS-1分子筛的催化氧化性能. X射线衍射结果表明,当晶种中SiO2占合成体系中SiO2的10 wt%(晶种引入TPAOH, TPAOH/SiO2=0.35),加入TPABr (TPABr/SiO2=0.03)做辅助结构导向剂,即合成体系中总(TPAOH+TPABr)/SiO2摩尔比低至0.07时,所得样品依然具有良好的结晶度.扫描电镜照片观察不到无定形物存在;晶种中SiO2占合成体系中SiO2的10 wt%时,所得TS-1晶粒尺寸约为250 nm ×150 nm ×50 nm;其他条件不变,胶态晶种用量增加到15 wt%时,初级晶粒尺寸基本保持不变,晶粒-晶粒之间交叉生长,形成孪生形貌;继续增加胶态晶种用量至20 wt%时,晶粒尺寸下降至仅100 nm左右;而用20 wt%胶态晶种所含相同量的TPAOH来代替胶态晶种,得到样品呈近10μm的大块状.与之对应的是,胶态silicalite-1晶种导向得到的小晶粒TS-1分子筛具有比直接用TPAOH得到的大块状样品更大的外比表面积和堆积孔体积.分析结果显示所得TS-1分子筛的体相TiO2/SiO2比在41–43.红外光谱和紫外可见光谱结果表明,胶态晶种导向法所得TS-1分子筛中的Ti主要以四配位状态存在,而直接用TPAOH合成的大块状样品则呈现显著骨架外Ti吸收峰,说明胶态晶种有助于Ti物种进入分子筛骨架.在催化正己烯环氧化反应时,用胶态silicalite-1晶种导向得到的小晶粒TS-1分子筛表现出与大块状TS-1相似的催化性能;而以环己酮氨肟化做探针反应时,小晶粒TS-1分子筛因具有外比表面积大和扩散路径短等优点而表现出远远高于大块状TS-1分子筛的催化活性.但与文献报道的相同SiO2/TiO2比的TS-1分子筛比较,本文所得小晶粒TS-1分子筛催化正己烯环氧化的活性略差.提高该小晶粒TS-1分子筛正己烯环氧化活性和建立构-效关系是下一步工作的重点.  相似文献   

18.
Organocobalt compounds in organic synthesis have three characteristic reactions. The first occurs because cobalt has a high affinity to carbon–carbon π‐bonds or carbon–nitrogen π‐bonds. The second occurs because cobalt has a high affinity to carbonyl groups. The third is due to cobalt easily tending to form square‐planar bipyramidal six‐coordination structures with four nitrogen atoms or two nitrogen atoms and two oxygen atoms at the square‐planar position, and to bond with one or two carbon atoms at the axial position. The first characteristic reactions are the representative reactions of organocobalt compounds with a mutually bridged bond between the two π‐bonds of acetylene and the cobalt–cobalt bond of hexacarbonyldicobalt. These are reactions with a Co2(CO)6 protecting group to reactive acetylene bond, the Nicholas reactions, the Pauson–Khand reactions ([2 + 2 + 1] cyclizations), [2 + 2 + 2] cyclizations, etc. These reactions are applied for the syntheses of many kinds of pharmaceutically useful compounds. The second reactions are carbonylations that have been used or developed as industrial processes such as hydroformylation for the manufacture of isononylaldehyde, and carbonylation for the production of phenylacetic acid from benzyl chloride. The third reactions are those reactions with the B12‐type catalysts, and they have recently been used in organic syntheses and are utilized as catalysts for stereoselective syntheses. These reactions have been used as new applications for organic syntheses. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Unlike other variants of transition‐metal‐catalyzed cross‐coupling reactions, those based on organosilicon donors have not been used extensively in natural product synthesis. However, recent advances such as: 1) the development of mild reaction conditions, 2) the expansion of substrate scope, 3) the development of methods to stereoselectively and efficiently introduce the silicon‐containing moiety, 4) the development of a large number of sequential processes, and 5) the advent of bifunctional bis(silyl) linchpin reagents, signify the coming of age of silicon‐based cross‐coupling reactions. The following case studies illustrate how silicon‐based cross‐coupling reactions play a strategic role in constructing carbon–carbon bonds in selected target molecules.  相似文献   

20.
S ‐Adenosylmethionine‐dependent methyltransferases (MTs) play a decisive role in the biosynthesis of natural products and in epigenetic processes. MTs catalyze the methylation of heteroatoms and even of carbon atoms, which, in many cases, is a challenging reaction in conventional synthesis. However, C‐MTs are often highly substrate‐specific. Herein, we show that SgvM from Streptomyces griseoviridis features an extended substrate scope with respect to the nucleophile as well as the electrophile. Aside from its physiological substrate 4‐methyl‐2‐oxovalerate, SgvM catalyzes the (di)methylation of pyruvate, 2‐oxobutyrate, 2‐oxovalerate, and phenylpyruvate at the β‐carbon atom. Chiral‐phase HPLC analysis revealed that the methylation of 2‐oxovalerate occurs with R selectivity while the ethylation of 2‐oxobutyrate with S ‐adenosylethionine results in the S enantiomer of 3‐methyl‐2‐oxovalerate. Thus SgvM could be a valuable tool for asymmetric biocatalytic C‐alkylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号