首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reduction of allylic alcohols can be promoted efficiently by the supported ruthenium catalyst Ru(OH)x/Al2O3. Various allylic alcohols were converted to saturated alcohols in excellent yields by using 2-propanol without any additives. This Ru(OH)x/Al2O3-catalyzed reduction of a dienol proceeds only at the allylic double bond to afford the corresponding enol, and chemoselective isomerization and reduction can be realized under similar conditions. The catalysis is truly heterogeneous and the high catalytic performance can be maintained during at least three recycles of the Ru(OH)x/Al2O3 catalyst. The transformation of allylic alcohols to saturated alcohols consists of three sequential reactions: oxidation of allylic alcohols to alpha,beta-unsaturated carbonyl compounds; reduction of alpha,beta-unsaturated carbonyl compounds to saturated carbonyl compounds; and reduction of saturated carbonyl compounds to saturated alcohols.  相似文献   

2.
InI-mediated direct allylation of carbonyl compounds with allylic alcohols proceeded smoothly with catalytic amounts of Ni(acac)(2) and PPh(3) to give the corresponding homoallylic alcohols in high yields. Allylindium compounds were shown to be the real allylating agents in the present system. Substituted allylic alcohols gave branched homoallylic alcohols with syn-selectivity irrespective of the geometry of the starting allylic alcohols, whereas high anti-selectivity was observed when a bulky substituent is present in the allylic alcohols. The outcome of the diastereoselectivity is discussed on the basis of the reaction mechanism, comparing with the corresponding Pd-catalyzed version. Another distinct behavior between the Ni- and Pd-catalyzed allylation was demonstrated in the reaction of hex-1,5-diene-3,4-diol derivatives: the Pd catalyst did not give any coupling product, whereas the Ni-catalyzed InI-mediated reaction with benzaldehyde afforded the 1:1 and 1:2 adduct diols selectively depending on the reaction conditions.  相似文献   

3.
Davis FA  Zhang J  Qiu H  Wu Y 《Organic letters》2008,10(7):1433-1436
Pyrrolidine enones, derived from 3-oxo pyrrolidine 2-phosphonates and a HWE reaction with aldehydes, on Luche reduction give pyrrolidine allylic alcohols. The alcohols on hydrogenation (Pd/H2) give cis-2,5-disubstituted pyrrolidines and on treatment with TFA-NaBH3CN undergo a hydroxy directed reduction to trans-2,5-disubstituted pyrrolidines.  相似文献   

4.
A new and efficient method for the reduction of α,β-unsaturated carboxylic esters to allylic alcohols utilizing LiAlH4/BnCl is described. Various α,β-unsaturated esters, including the coumarins bearing α,β-unsaturated lactone skeleton, can be converted smoothly into their corresponding allylic alcohols in high yields under mild conditions with short reaction times.  相似文献   

5.
Although over 100 catalysts have been reported to catalyze the asymmetric addition of alkyl groups to aldehydes, these catalysts fail to promote additions to ketones with >90% enantioselectivity. This paper describes the asymmetric 1,2-addition of alkyl groups to conjugated cyclic enones to give allylic alcohols with chiral quaternary centers. The resultant allylic alcohols are converted into epoxy alcohols with excellent diastereoselectivities. Treatment of the epoxy alcohols with BF3.OEt2 induces a semipinacol rearrangement to provide alpha,alpha-dialkyl-beta-hydroxy ketones with all-carbon chiral quaternary centers. We also report a one-pot procedure for the asymmetric addition/diastereoselective epoxidation reaction. Simply exposing the reaction mixture to dioxygen after the asymmetric addition reaction is complete results in epoxidation of the allylic alcohol with high diastereoselectivity.  相似文献   

6.
Nickel hydride type complexes have been successfully developed as catalysts for the tandem isomerization-aldolization reaction of allylic alcohols with aldehydes. Optimization of the reaction conditions has shown that a cocatalyst, such as MgBr2, has a very positive effect on the kinetics of the reaction and in the yields of aldols. Under such optimized conditions {[NiHCl(dppe)] + MgBr(2) at 3-5 mol %)}, this reaction affords the aldols in good to excellent yields. It is a full-atom-economy-type reaction that occurs under mild conditions. Furthermore, it has a broad scope for the allylic alcohols and it is compatible with a wide range of aldehydes, including very bulky derivatives. The reaction is completely regioselective, but it exhibits a low stereoselectivity, except for allylic alcohols with a bulky substituent at the carbinol center. The use of chiral nonracemic catalysts was not successful, affording only racemic compounds. However, it was possible to use asymmetric synthesis for the preparation of optically active aldols. Various mechanistic studies have been performed using, for instance, a deuterated alcohol or a deuterated catalyst. They gave strong support to a mechanism involving first a transition-metal-mediated isomerization of the allylic alcohol into the free enol, followed by the addition of the latter intermediate onto the aldehyde in an "hydroxyl-carbonyl-ene" type reaction. These results confirm that allylic alcohols can be considered as new and useful partners in the development of the aldol reaction.  相似文献   

7.
Grubbs' 2nd generation and Hoveyda-Grubbs' ruthenium alkylidenes are shown to be effective catalysts for cross-metatheses of allylic alcohols with cyclic and acyclic olefins, as well as isomerization of the resulting allylic alcohols to alkyl ketones. The net result of this new tandem methodology is a single-flask process that provides highly functionalized, ketone-containing products from simple allylic alcohol precursors. [reaction: see text]  相似文献   

8.
Naoyoshi Maezaki 《Tetrahedron》2006,62(44):10361-10378
Highly stereoselective synthesis of 1,4-bifunctional compounds was accomplished via 1,2-asymmetric induction to α-oxyaldehyde and α-oxyketone followed by regio- and diastereoselective Pd-catalyzed allylic substitution reaction. We found that trifluoroacetate is a suitable leaving group for the allylic substitution reaction. Various nucleophiles containing carbon, nitrogen, and sulfur can be applied to the method. Both 1,4-syn- and 1,4-anti-adducts were synthesized with high stereoselectivity by using stereodivergent reduction of the propargyl alcohols followed by allylic substitution reaction.  相似文献   

9.
A one-pot method for the direct preparation of enantioenriched (Z)-disubstituted allylic alcohols is introduced. Hydroboration of 1-halo-1-alkynes with dicyclohexylborane, reaction with t-BuLi, and transmetalation with dialkylzinc reagents generate (Z)-disubstituted vinylzinc intermediates. In situ reaction of these reagents with aldehydes in the presence of a catalyst derived from (-)-MIB generates (Z)-disubstituted allylic alcohols. It was found that the resulting allylic alcohols were racemic, most likely due to a rapid addition reaction promoted by LiX (X = Br and Cl). To suppress the LiX-promoted reaction, a series of inhibitors were screened. It was found that 20-30 mol % tetraethylethylenediamine inhibited LiCl without inhibiting the chiral zinc-based Lewis acid. In this fashion, (Z)-disubstituted allylic alcohols were obtained with up to 98% ee. The asymmetric (Z)-vinylation could be coupled with tandem diastereoselective epoxidation reactions to provide epoxy alcohols and allylic epoxy alcohols with up to three contiguous stereogenic centers, enabling the rapid construction of complex building blocks with high levels of enantio- and diastereoselectivity.  相似文献   

10.
在水悬浮体系中使用三氯异氰尿酸/碱氧化体系对α,β-不饱和酮化合物进行环氧化和对烯丙基醇类化合物进行直接氧化-环氧化制备α,β-环氧酮, 考察了表面活性剂、碱等因素对反应的影响. 反应无需有机溶剂, 对于大部分的烯酮和烯丙基醇反应可以在数小时内完成, 产率良好.  相似文献   

11.
Lei A  Lu X 《Organic letters》2000,2(15):2357-2360
The high regio- and stereoselectivity have been obtained from the allylic substitution reaction catalyzed by palladium(II) species. From allylic alcohols, one-pot reaction with tosyl isocyanate followed by palladium(II)-catalyzed allylic substitution gives N-tosyl (E)-allylic amines in high yield. The substitution occurs only at the gamma-position of the 1- or 3-substituted allylic alcohols.  相似文献   

12.
The palladium-catalyzed deracemization of racemic cyclic and acyclic allylic methyl carbonates in water in the presence of N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphophino)benzamide] proceeds with high enantioselectivities to give the corresponding allylic alcohols in high yields. This deracemization involves a palladium-catalyzed allylic substitution with the in-situ-formed hydrogen carbonate ion and an irreversible decomposition of the intermediate allylic hydrogen carbonates, with formation of the corresponding allylic alcohols. The palladium-catalyzed reaction of racemic cyclic allylic acetates with potassium hydrogen carbonate in water in the presence of the chiral bisphosphane proceeds with a highly selective kinetic resolution to give the corresponding allylic alcohols and allylic acetates.  相似文献   

13.
[reaction: see text] The kinetic resolution of racemic allylic alcohols 3, 6, and 12--17 has been explored using the PBO catalyst 7 for activation of isobutyric anhydride. Trisubstituted allylic alcohols (12--15; 17) are the best substrates and react with an enantioselectivity of s = 32--82 at -40 degrees C.  相似文献   

14.
Enantiomerically pure (Z)-β-sulfinyl allylic alcohols of either handedness can be readily prepared from (Z)-β-sulfinyl enones using NaBH(4) or DIBAL reductants in the presence of LaCl(3) as a chelating agent. A chiral sulfoxide auxiliary induces the remote 1,2-asymmetric reduction (1,4-induction) to afford various chiral allylic alcohols in high yields with excellent stereoselectivities (up to 100% de).  相似文献   

15.
Asymmetric allylic alkylation of β‐ketoesters with allylic alcohols catalyzed by [Ni(cod)2]/(S)‐H8‐BINAP was found to be a superior synthetic protocol for constructing quaternary chiral centers at the α‐position of β‐ketoesters. The reaction proceeded in high yield and with high enantioselectivity using various β‐ketoesters and allylic alcohols, without any additional activators. The versatility of this methodology for accessing useful and enantioenriched products was demonstrated.  相似文献   

16.
Two reaction strategies are developed to promote the highly selective 1,3-isomerization of a variety of allylic alcohols using O3ReOSiPh3 as a catalyst. The first strategy utilizes substrates whose 1,3-regioisomer contains a conjugated alkene, which relies on thermodynamics to obtain high selectivity. The second strategy employs N,O-bis(trimethylsilyl)acetamide as an additive to selectively and irreversibly remove the product from the reaction equilibrium and works well for the isomerization of tertiary allylic alcohols into primary allylic alcohols containing trisubstituted alkene components. High stereoselectivity is also observed in the 1,3-isomerization of enantioenriched allylic alcohols.  相似文献   

17.
A highly efficient kinetic resolution (KR) of racemic tertiary allylic alcohols was achieved through an intramolecular allylic substitution reaction using a co-catalyst system composed of chiral bisphosphoric acid and silver carbonate. This reaction afforded enantioenriched diene monoepoxides along with the recovery of tertiary allylic alcohols in a highly enantioselective manner, realizing an extremely high s-factor in most cases. The present method provides a new access to enantioenriched tertiary allylic alcohols, multifunctional compounds that are applicable for further synthetic manipulations.

A highly efficient KR of racemic tertiary allylic alcohols was developed through the intramolecular SN2′ reaction using the chiral bisphosphoric acid/silver carbonate co-catalyst system, affording cis-epoxides and recovered alcohols in a high s-factor.  相似文献   

18.
Allyltrimethylsilane (allyl-TMS) reacts with propargylic alcohols in the presence of 10% Bi(OTf)(3) in [BMIM][BF(4)] solvent to furnish the corresponding 1,5-enynes in respectable isolated yields (87-93%) at room temperature. The utility of Bi(OTf)(3) as a superior catalyst was demonstrated in a survey study on coupling of allyl-TMS with employing several metallic triflates (Bi, Ln, Al, Yb) as well as, B(C(6)F(5))(3), Zn(NTf(2))(2) and Bi(NO(3))(3)·5H(2)O. Coupling of cyclopropyl substituted propargylic alcohol with allyl-TMS gave the skeletally intact 1,5-enyne and a ring opened derivative as a mixture. Coupling of propargylic/allylic alcohol with allyl-TMS resulted in allylation at both benzylic (2 isomers) and propargylic positions, as major and minor products respectively. The scope of this methodology for allylation of a series of allylic and benzylic alcohols was explored. Chemoselective reduction of a host of propargylic, propagylic/allylic, bis-allylic, allylic, and benzylic alcohols with Et(3)SiH was achieved in high yields with short reaction times. The same approach was successfully applied to couple representative propargylic and allylic alcohols with 1-phenyl-2-trimethylsilylacetylene. The recovery and reuse of the ionic liquid (IL) was gauged in a case study with minimal decrease in isolated yields after six cycles.  相似文献   

19.
A two-step reaction sequence to homoallylic nitro compounds from allylic alcohols is presented. Ethoxy carbonylation of the alcohols with ethyl chloroformate provides the corresponding allylic ethyl carbonates in high yields. Exposure of these substrates to catalytic palladium(0) in CH(3)NO(2) initiates a reaction sequence, ionization-decarboxylation-nitromethylation, that culminates with the formation of nitroalkenes. The regio- and stereochemical outcomes of the nitromethyl allylation reaction can be explained by the behavior of the transient pi-allylpalladium complexes. This methodology serves as a centerpiece for the synthesis of an important carbocyclic nucleoside intermediate.  相似文献   

20.
This study reports the first base-promoted aldol–Tishchenko reactions of allylic alcohols with aldehydes initiated by allylic isomerization. The reaction enables the diastereoselective synthesis of a variety of 1,3-diols with three contiguous stereogenic centers. Unlike commonly reported systems, our method allows the use of readily available allylic alcohols as nucleophiles instead of enolizable aldehydes and ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号