首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Assuming various ionic states in ionic liquids (ILs) are in equilibrium with exchange rates too high to be distinguished by NMR experiments and the overall response of measured diffusivity is viewed as the sum of weighted responses of diffusivity of all possible components, the ratio of cation diffusivity to anion diffusivity, D+/D?, in a specified IL affords the physical meaning: relative association degrees observed by anion‐containing components to cation‐containing components. These values decrease with increasing temperature showing the equilibrium between ionic states shifting to smaller components. In the neat 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMI‐PF6), (BMI‐PF6)nPF6? anions are found preferred to (BMI‐PF6)nBMI+ cations and this phenomenon is termed as hyper anion preference (HAP). The counterpart statement, “isolated BMI+Cations Are More than Isolated PF6? Anions in the Room Temperature in the BMI‐PF6 Ionic Liquid” is employed as the research title. The HAP approach can be employed to explain the temperature‐dependent values of D+/D? obtained for BMI‐PF6/2,2,2‐trifluoroethane (TFE) mixtures at two different compositions (χTFE = 0.65 and 0.80). More significantly, this argument can rationalize numerous physical properties published for this IL: (1) higher sensitive of anionic diffusivity towards temperatures than cationic diffusivity, (2) temperature‐dependent cationic transference number, (3) low anionic donicity and high ionicity and (4) high viscosity.  相似文献   

2.
We report the synthesis and characterization of a series of novel imidazolium cation and bis(trifluoromethane)sulfonimide anion (TFSI?)‐based ionic liquid (IL) model compounds and their corresponding polymeric ionic liquids (PILs) with various tethering groups. Ethylene oxide repeating units were attached as tethering groups to an imidazolium cation to optimize the glass transition temperatures (Tg) and ionic conductivities of the PILs. The novel PILs exhibit excellent conductivity values of around 8 × 10?4 S/cm at room temperature. The thermophysical and electrochemical properties of ILs, including thermal transition, ionic conductivity, and rheological behavior, were characterized to investigate the effect of tethering groups. We conclude that the length of poly(ethylene oxide) tethering group has a tremendous effect on both physical property and electrochemical behavior and that charge carrier density is dominant in defining ionic conductivity with free ILs, whereas ion mobility plays a more important role after polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1339–1350  相似文献   

3.
The fragmentation–rearrangement of peptide backbones mediated by nitrogen dioxide, NO2., was explored using di‐, tri‐, and tetrapeptides 8 – 18 as model systems. The reaction, which is initiated through nonradical N‐nitrosation of the peptide bond, shortens the peptide chain by the expulsion of one amino acid moiety with simultaneous fusion of the remaining molecular termini through formation of a new peptide bond. The relative rate of the fragmentation–rearrangement depends on the nature of the amino acids and decreases with increasing steric bulk at the α carbon in the order Gly>Ala>Val. Peptides that possessed consecutive aromatic side chains only gave products that resulted from nitrosation of the sterically less congested N‐terminal amide. Such backbone fragmentation–rearrangement occurs under physiologically relevant conditions and could be an important reaction pathway for peptides, in which sections without readily oxidizable side chains are exposed to the air pollutant NO2.. In addition to NO2.‐induced radical oxidation processes, this outcome shows that ionic reaction pathways, in particular nitrosation, should be factored in when assessing NO2. reactivity in biological systems.  相似文献   

4.

Transport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K.

  相似文献   

5.
The ionic [Ti33‐OPri)2(µ‐OPri)3(OPri)6][FeCl4] halo‐alkoxide ( A ) was investigated for its activity towards the bulk polymerization of rac‐lactide (rac‐LA) and ?‐caprolactone (?‐CL) in various temperatures, monomer/ A molar proportions, and reaction times. The reactivity of A in the ring‐opening polymerization (ROP) of both monomers is mainly due to the cationic [Ti3(OPri)11]+ unity and proceeds through the coordination–insertion mechanism. Molecular weights ranging from 6,379 to 13,950 g mol?1 and PDI values varying from 1.22 to 1.52 were obtained. Results of ROP kinetic studies for both ?‐CL and rac‐LA confirm that the reaction rates are first‐order with respect to monomers. The production of poly(?‐caprolactone) shows a higher sensitivity of the reaction rate to temperature, while the polymerization of rac‐LA is slower and more dependent on the thermal stability of the active species during the propagation step. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2509–2517  相似文献   

6.
Thin films of vanadium oxide were grown on vanadium metal surfaces (i) in air at ambient conditions, (ii) in 5 mM H2SO4 (aq), pH 3, (iii) by thermal oxidation at low oxygen pressure (10?5 mbar) at temperatures between 350 and 550 °C and (iv) at near‐atmospheric oxygen pressure (750 mbar) at 500 °C. The oxide films were investigated by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). The lithium intercalation properties were studied by cyclic voltammetry (CV). The results show that the oxide films formed in air at room temperature (RT), in acidic aqueous solution, and at low oxygen pressure at elevated temperatures are composed of V2O3. In air and in aqueous solution at RT, the oxide films are ultra‐thin and hydroxylated. At 500 °C, nearly atmospheric oxygen pressure is required to form crystalline V2O5 films. The oxide films grown at pO2 = 750 mbar for 5 min are about 260‐nm thick, and consist of a 115‐nm outer layer of crystalline V2O5. The inner oxide is mainly composed of VO2. For all high temperature oxidations, the oxygen diffusion from the oxide film into the metal matrix was considerable. The oxygen saturation of the metal at 450 °C was found, by XPS, to be 27 at.% at the oxide/metal interface. The well‐crystallized V2O5 film, formed by oxidation for 5 min at 500 °C and 750 mbar O2, was shown to have good lithium intercalation properties and is a promising candidate as electrode material in lithium batteries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Most molecules in confined spaces show markedly different behaviors from those in the bulk. Large pores are composed of two regions: an interface region in which liquids interact with the pore surface, and a core region in which liquids behave as bulk. The realization of a highly mobile ionic liquid (IL) in a mesoporous metal–organic framework (MOF) is now reported. The hybrid shows a high room‐temperature conductivity (4.4×10?3 S cm?1) and low activation energy (0.20 eV); both not only are among the best values reported for IL‐incorporated MOFs but also are classified as a superionic conductor. The conductivity reaches over 10?2 S cm?1 above 343 K and follows the Vogel–Fulcher–Tammann equation up to ca. 400 K. In particular, the hybrid is advantageous at low temperatures (<263 K), where the ionic conduction is superior to that of bulk IL, making it useful as solid‐state electrolytes for electrochemical devices operating over a wide temperature range.  相似文献   

8.
Synthesis and physicochemical properties of four pyridinium‐based ionic liquids (ILs), N‐propylpyridinium bromide [N‐propylPyr]+[Br], N‐isopropylpyridinium bromide [N‐isopropylPyr]+[Br], N‐propylpyridinium hexafluorophosphate [N‐propylPyr]+[PF6], and N‐isopropylpyridinium hexafluorophosphate [N‐isopropylPyr]+[PF6] are reported. The molecular structures of these compounds were characterized by FT‐IR, 1H, 19F, and 31P NMR, spectroscopy. The thermal properties, conductivity, and solubility of these ionic liquids were also investigated. The effects of propyl and isopropyl alkyl lateral chain at the N‐position of pyridinium cation on the thermal stability, conductivity, and solubility of ionic liquids are discussed. The results obtained confirmed that the ionic liquids based on pyridinium cations exhibit higher decomposition temperature, low melting points, immiscible with water, and their conductivities are mainly influenced by mobility of ions.  相似文献   

9.
Cationic rearrangement in bulk Mn2FeMoO6 at 150—300 °C leads to a transition from the Ni3TeO6‐type to an ordered ilmenite structure, and dramatic changes of the electrical and magnetic properties as evidenced by powder X‐ray and neutron diffraction, and second harmonic generation.  相似文献   

10.
The photoinitiated cationic polymerization of cyclohexene oxide with N‐phenacyl‐N,N‐dimethylanilinium hexafluoroantimonate (PDA+SbF6) and a polynuclear aromatic compound, such as perylene, anthracene or phenothiazine, or an aromatic carbonyl compound, such as benzophenone or thioxanthone, was studied at λinc > 340 nm. All the aromatic sensitizers except benzophenone and thioxanthone are effective in initiating the polymerization at wavelengths where PDA+SbF6 is transparent. An initiation mechanism is proposed that involves electron transfer from the excited sensitizer to PDA+SbF6.  相似文献   

11.
Triarylsulfonium salts Ar3S+MXn with complex metal halide anions such as BF4, AsF6, PF6, and SbF6 are a new class of highly efficient photoinitiators for cationic polymerization. In this article we describe several synthetic routes to the preparation of these compounds along with their physical and spectroscopic properties. Mechanistic studies have shown that when these compounds are irradiated at wavelengths of 190–365 nm carbon-sulfur bond cleavage occurs to form radical fragments. At the same time the strong Brϕnsted acid HMXn, which is the active initiator of cationic polymerization that takes place in subsequent “dark” steps, is also produced. A study of the parameters that affect the photolysis of triarylsulfonium salts is reported with a measurement of the absolute quantum yields. The cationic polymerizations of four typical monomers—styrene oxide, cyclohexene oxide, tetrahydrofuran, and 2-chloroethyl vinyl ether—with triarylsulfonium salt photoinitiators are described.  相似文献   

12.
To extensively explore the influence of anion structure on the physical properties of poly(ionic liquid)s (PILs) a series of PILs having main‐chain 1,2,3‐triazolium cations was synthesized via copper(I)‐catalyzed azide‐alkyne 1,3‐dipolar cycloaddition (CuAAC) followed by N‐alkylation with iodomethane and anion metathesis with different metal salts, that is, Li(CF3SO2)2N, Li(CF3CF2SO2)2N, K(FSO2)2N, K(CF3SO2)N(CN), Ag(CN)2N, and sodium 4,5‐dicyano‐1,2,3‐triazolate. To isolate the effect of anion on physical properties of PILs, a common iodide precursor was used to maintain constant the average degree of polymerization (DPn) and chain dispersity. Detailed structure/properties relationship analyses demonstrated a lack of correlation between anion chemical structure, ionic conductivity, and glass transition temperatures. Among synthesized series, the PIL derivative having bis(trifluoromethylsulfonyl)imide counter anion showed the best compromise in performance: low glass transition temperature (Tg = ?68 °C), high thermal stability (Tonset = 340 °C) and superior ionic conductivity (σDC = 8.5 × 10? 6 S/cm at 30 °C), which makes it an interesting candidate for various key modern electrochemical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2191–2199  相似文献   

13.
The stable 2,2,6,6‐tetramethylpiperidine‐1‐yloxyl and its derivatives with hydrogen‐bond‐forming (‐OH, ‐OSO3H), anionic (‐OSO3? bearing K+ or [K(18‐crown‐6)]+ as counter ion), or cationic (‐N+(CH3)3 bearing I?, BF4?, PF6? or N?(SO2CF3)2 as counter ion) substituents are investigated in 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide over a wide temperature range. The temperature dependence of the viscosity of the ionic liquid is well described by the Vogel–Fulcher–Tammann equation. Interestingly, the temperature dependence of the rotational correlation time of the spin probes substituted with either a hydrogen‐bond‐forming group or an ionic substituent can be described using the Stokes–Einstein equation. In contrast, the temperature dependence of the rotational correlation time of the spin probe without an additional substituent at the 4‐position to the nitroxyl group does not follow this trend. The activation energy for the mobility of the unsubstituted spin probe, determined from an Arrhenius plot of the spin‐probe mobility in the ionic liquid above the melting temperature, is comparable with the activation energy for the viscous flow of the ionic liquid, but is higher for spin probes bearing an additional substituent at the 4‐position. Quantum chemical calculations of the spin probes using the 6‐31G+d method give information about the rotational volume of the spin probes and the spin density at the nitrogen atom of the radical structure as a function of the substituent at the spin probes in the presence and absence of a counter ion. The results of these calculations help in understanding the effect of the additional substituent on the experimentally determined isotropic hyperfine coupling constant.  相似文献   

14.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

15.
The photophysical and DNA‐binding properties of the cationic zinc(II) complex of 5‐triethylammonium methyl salicylidene ortho‐phenylenediiminato (ZnL2+) were investigated by a combination of experimental and theoretical methods. DFT calculations were performed on both the ground and the first excited states of ZnL2+ and on its possible mono‐ and dioxidation products, both in vacuo and in selected solvents mimicked by the polarizable continuum model. Comparison of the calculated absorption and fluorescence transitions with the corresponding experimental data led to the conclusion that visible light induces a two‐electron photooxidation process located on the phenylenediiminato ligand. Kinetic measurements, performed by monitoring absorbance changes over time in several solvents, are in agreement with a slow unimolecular photooxidation process, which is faster in water and slower in less polar solvents. Moreover, structural details of ZnL–DNA binding were obtained by DFT calculations on the intercalation complexes between ZnL and the d(ApT)2 and d(GpC)2 dinucleoside monophosphate duplexes. Two main complementary binding interactions are proposed: 1) intercalation of the central phenyl ring of the ligand between the stacked DNA base pairs; 2) external electrostatic attraction between the negatively charged phosphate groups and the two cationic triethylammonium groups of the Schiff‐base ligand. Such suggestions are supported by fluorescence titrations performed on the ZnL/DNA system at different ionic strengths and temperatures. In particular, the values of the DNA‐binding constants obtained at different temperatures provided the enthalpic and entropic contributions to the binding and confirmed that two competitive mechanisms, namely, intercalation and external interaction, are involved. The two mechanisms are coexistent at room temperature under physiological conditions.  相似文献   

16.
To combine good chemical stability and high oxygen permeability, a mixed ionic‐electronic conducting (MIEC) 75 wt % Ce0.85Gd0.1Cu0.05O2?δ‐25 wt % La0.6Ca0.4FeO3?δ (CGCO‐LCF) dual‐phase membrane based on a MIEC–MIEC composite has been developed. Copper doping into Ce0.9Gd0.1O2?δ (CGO) oxide enhances both ionic and electronic conductivity, which then leads to a change from ionic conduction to mixed conduction at elevated temperatures. For the first time we demonstrate that an intergranular film with 2–10 nm thickness containing Ce, Ca, Gd, La, and Fe has been formed between the CGCO grains in the CGCO‐LCF one‐pot dual‐phase membrane. A high oxygen permeation flux of 0.70 mL min?1 cm?2 is obtained by the CGCO‐LCF one‐pot dual‐phase membrane with 0.5 mm thickness at 950 °C using pure CO2 as the sweep gas, and the membrane shows excellent stability in the presence of CO2 even at lower temperatures (800 °C) during long‐term operation.  相似文献   

17.
The ionic liquid 1‐n‐butyl‐3‐methylimidazolium heptachlorodiferrate (BMI.Fe2Cl7) is efficiently used as catalyst in the cationic emulsion polymerization of styrene. The effect of different reaction temperatures, surfactant, and ionic liquid concentrations on polymer properties as molecular weight distribution and particle size is evaluated. High weight average molecular weights, above 1000 kDa, are achieved at 70% of conversion in 100 nm polystyrene particles formed mainly by micellar nucleation. Particle sizes and molecular weights increase with the decrease of the amount of surfactant. Even at low concentrations, BMI.Fe2Cl7/styrene molar ratio equal to 1/1000, the ionic liquid proves to be efficient for the emulsion polymerization of styrene, and lower ionic liquid concentrations lead to the formation of longer polymer chains.  相似文献   

18.
The propagation kinetics of isoprene radical polymerizations in bulk and in solution are investigated via pulsed laser initiated polymerizations and subsequent polymer analyses via size‐exclusion chromatography, the PLP‐SEC method. Because of low polymerization rate and high volatility of isoprene, the polymerizations are carried out at elevated pressure ranging from 134 to 1320 bar. The temperatures are varied between 55 and 105 °C. PLP‐SEC yields activation parameters of kp (Arrhenius parameters and activation volume) over a wide temperature and pressure range that allow for the calculation of kp at technically relevant ambient pressure conditions. The kp values determined are very low, e.g., 99 L mol?1 s?1 at 50 °C, which is even lower than the corresponding value for styrene polymerizations. The presence of a polar solvent results in a slight increase of kp compared to the bulk system. The kp values reported are important for determining rate coefficients of other elemental reactions from coupled parameters as well as for modeling isoprene free‐radical polymerizations and reversible deactivation radical polymerization with respect to tailored polymer properties and optimizing the polymerization processes.  相似文献   

19.
Weakly coordinating borate or aluminate anions have recently been shown to yield interesting properties of the resulting ionic liquids (ILs). The same is true for large phenyl‐substituted imidazolium cations, which can be tuned by the choice, position, or number of substituents on the aromatic ring. We were therefore interested to combine these aryl alkyl imidazolium cations with the weakly coordinating tetrakis((1,1,1,3,3,3‐hexafluoropropan‐2‐yl)oxy)borate [B(hfip)4]? anions to study the physical properties and viscosities of these ionic liquids. Despite the large size and high molecular weight of these readily available ILs, they are liquid at room temperature and show remarkably low glass transition points and relatively high decomposition temperatures.  相似文献   

20.
The gelation behavior of cationic surfactants with different counterions, Br?, [FeCl3Br]?, and [CeCl3Br]?, in imidazolium ionic liquids (ILs) and protic ethylammonium nitrate was investigated. Small‐angle X‐ray scattering measurements and freeze‐fracture transmission electron microscopy observations revealed the lamellar phases of metallosurfactant ionogels. The characteristics of imidazolium ILs, including the size and type, have effects on metallosurfactant ionogel properties, such as transformation temperatures, interlayer spacing, and mechanical strength. Cubic fluorite structured cerium oxide nanoparticles (CeO2 NPs) were produced by using metallosurfactant ionogels as precursors. Cubic fluorite CeO2 exhibited good catalase mimetic activity toward H2O2 to generate O2, providing more multiple mimetic enzyme activities of CeO2 NPs for H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号