首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Catalyzed by Rhodococcus erythropolis AJ270, a nitrile hydratase and amidase containing microbial whole-cell catalyst, at 10 ℃ and with the use of methanol as a co-solvent, nitrile and amide biotransformations produce 2S-1,4-benzodioxane-2-carboxamide and 2R-1,4-benzodioxane-2-carboxylic acid in high yields with excellent enantioselectivity.  相似文献   

2.
The mechanisms of iron‐catalyzed regioselective anti‐Markovnikov addition of C‐H bonds in the aromatic ketones to alkenes are studied using Density Functional Theory (DFT) calculations with the B3LYP‐D3 method. Our results show that the overall catalytic cycle includes the initial generation of aromatic ketone C‐H activation, the coordination and insertion of a styrene, and finally C‐C reductive elimination. Two different alkylation products are obtained through the linear or branched formation via several different paths. The formation of the linear product is energetically favorable over that of the branched product, which is in agreement with the experimental observation. The rate‐limiting step for the whole catalytic cycle to obtain the main linear product is the reductive elimination step where the Gibbs free energy in solvent THF ΔGsol is 13.5 kcal/mol computed using the SMD method.  相似文献   

3.
Adenosylhopane is a crucial intermediate in the biosynthesis of bacteriohopanepolyols, which are widespread prokaryotic membrane lipids. Herein, it is demonstrated that reconstituted HpnH, a putative radical S‐adenosyl‐l ‐methionine (SAM) enzyme, commonly encoded in the hopanoid biosynthetic gene cluster, converts diploptene into adenosylhopane in the presence of SAM, flavodoxin, flavodoxin reductase, and NADPH. NMR spectra of the enzymatic reaction product were identical to those of synthetic (22R)‐adenosylhopane, indicating that HpnH catalyzes stereoselective C?C formation between C29 of diploptene and C5′ of 5′‐deoxyadenosine. Further, the HpnH reaction in D2O‐containing buffer revealed that a D atom was incorporated at the C22 position of adenosylhopane. Based on these results, we propose a radical addition reaction mechanism catalyzed by HpnH for the formation of the C35 bacteriohopane skeleton.  相似文献   

4.
An iridium‐catalyzed asymmetric hydrogenation of unfunctionalized exocyclic C=C bonds was performed by using an axially flexible chiral phosphine–oxazoline ligand, providing the desired chiral 1‐benzyl‐2,3‐dihydro‐1H‐indene products with up to 98 % ee (enantiomeric excess). This represents the first general hydrogenation of unfunctionalized exocyclic olefins with high selectivity reported thus far. The additive acetate ion plays an important role in the reaction's high enantioselectivity. The chiral product can be further transformed into key intermediates required for the synthesis of an important insecticide and a drug compound.  相似文献   

5.
A newly designed zinc Lewis acid/base hybrid catalyst was developed. By adjusting the Lewis acidity of the zinc center, aldol‐type additions of 2‐picolylamine Schiff base to aldehydes proceeded smoothly to afford syn‐aldol adduct equivalents, transN,O‐acetal adducts, in high yields with high selectivities. NMR experiments, including microchanneled cell for synthesis monitoring (MICCS) NMR analysis, revealed that anti‐aldol adducts were formed at the initial stage of the reactions under kinetic control, but the final products were the trans‐(syn)‐N,O‐acetal adducts that were produced through a retro‐aldol process under thermodynamic control. In the whole reaction process, the zinc catalyst played three important roles: i) promotion of the aldol process (C?C bond formation), ii) cyclization process to the N,O‐acetal product (C?O bond formation), and iii) retro‐aldol process from the anti‐aldol adduct to the syn‐aldol adduct (C?C bond cleavage and C?C bond formation).  相似文献   

6.
S ‐Adenosylmethionine (SAM) is one of the most common co‐substrates in enzyme‐catalyzed methylation reactions. Most SAM‐dependent reactions proceed through an SN2 mechanism, whereas a subset of them involves radical intermediates for methylating non‐nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM‐dependent methyltransferases, NosN does not produce S ‐adenosylhomocysteine (SAH) as a co‐product. Instead, NosN converts SAM into 5′‐methylthioadenosine as a direct methyl donor, employing a radical‐based mechanism for methylation and releasing 5′‐thioadenosine as a co‐product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme‐catalyzed methylation reactions.  相似文献   

7.
The amine‐catalyzed enantioselective Michael addition of aldehydes to nitro alkenes (Scheme 1) is known to be acid‐catalyzed (Fig. 1). A mechanistic investigation of this reaction, catalyzed by diphenylprolinol trimethylsilyl ether is described. Of the 13 acids tested, 4‐NO2? C6H4OH turned out to be the most effective additive, with which the amount of catalyst could be reduced to 1 mol‐% (Tables 25). Fast formation of an amino‐nitro‐cyclobutane 12 was discovered by in situ NMR analysis of a reaction mixture. Enamines, preformed from the prolinol ether and aldehydes (benzene/molecular sieves), and nitroolefins underwent a stoichiometric reaction to give single all‐trans‐isomers of cyclobutanes (Fig. 3) in a [2+2] cycloaddition. This reaction was shown, in one case, to be acid‐catalyzed (Fig. 4) and, in another case, to be thermally reversible (Fig. 5). Treatment of benzene solutions of the isolated amino‐nitro‐cyclobutanes with H2O led to mixtures of 4‐nitro aldehydes (the products 7 of overall Michael addition) and enamines 13 derived thereof (Figs. 69). From the results obtained with specific examples, the following tentative, general conclusions are drawn for the mechanism of the reaction (Schemes 2 and 3): enamine and cyclobutane formation are fast, as compared to product formation; the zwitterionic primary product 5 of C,C‐bond formation is in equilibrium with the product of its collapse (the cyclobutane) and with its precursors (enamine and nitro alkene); when protonated at its nitronate anion moiety the zwitterion gives rise to an iminium ion 6 , which is hydrolyzed to the desired nitro aldehyde 7 or deprotonated to an enamine 13 . While the enantioselectivity of the reaction is generally very high (>97% ee), the diastereoselectivity depends upon the conditions, under which the reaction is carried out (Fig. 10 and Tables 15). Various acid‐catalyzed steps have been identified. The cyclobutanes 12 may be considered an off‐cycle ‘reservoir’ of catalyst, and the zwitterions 5 the ‘key players’ of the process (bottom part of Scheme 2 and Scheme 3).  相似文献   

8.
2H‐azirines can serve as three‐atom synthons by C?C bond cleavage, however, it involves a high energy barrier under thermal conditions (>50.0 kcal mol?1). Reported is a ruthenium‐catalyzed [3+2+2] cycloaddition reaction of 2H‐azirines with diynes, thus leading to the formation of fused azepine skeletons. This approach features an unprecedented metal‐catalyzed C?C bond cleavage of 2H‐azirines at room temperature, and the challenging construction of aza‐seven‐membered rings from diynes. The results of this study provide a new reaction pattern for constructing nitrogen‐containing seven‐membered rings and may find applications in the synthesis of other complex heterocycles.  相似文献   

9.
The uranyl dication shows photocatalytic activity towards C(sp3)?H bonds of aliphatic compounds, but not towards those of alkylbenzenes or cyclic ketones. Theoretical insights into the corresponding mechanisms are still limited. Multi‐configurational ab initio calculations including relativistic effects reveal the inherent electron‐transfer mechanism for the uranyl catalyzed C?H fluorination under blue light. Along the reaction path of the triplet state it was found that the hydrogen atom abstraction triggered by the electron‐rich oxygen of the uranyl moiety is the rate‐limiting step. The subsequent steps, that is, N?F and O?H bond breakage in a manner of concerted asynchronicity, generation of the targeted fluorinated product, and recovery of the photocatalyst are nearly barrierless. Moreover the single electron transfer between the reactive substrates plays a fundamental role during the whole photocatalytic cycle.  相似文献   

10.
A formal total synthesis of (?)‐taxol by a convergent approach utilizing Pd‐catalyzed intramolecular alkenylation is described. Formation of the eight‐membered carbocyclic ring has been a problem in the convergent total synthesis of taxol but it was solved by the Pd‐catalyzed intramolecular alkenylation of a methyl ketone affording the cyclized product in excellent yield (97 %), indicating the high efficiency of the Pd‐catalyzed intramolecular alkenylation. Rearrangement of the epoxy benzyl ether through a 1,5‐hydride shift, generating the C3 stereogenic center and subsequently forming the C1–C2 benzylidene, was discovered and utilized in the preparation of a substrate for the Pd‐catalyzed reaction.  相似文献   

11.
We describe iron‐catalyzed intermolecular oxidative coupling reactions of diarylamines to form substituted 2,2′‐bis(arylamino)biaryl compounds, tetraarylhydrazines, and 5,6‐dihydrobenzo[c ]cinnolines with the same hexadecafluorinated iron–phthalocyanine catalyst. The mild formation of C−C or N−N bonds was controlled by the use of acidic or basic additives. In contrast to most iron‐catalyzed dehydrogenative coupling reactions, ambient air could be used as the sole oxidant. Moreover, iron(III) chloride hexahydrate promoted a one‐pot coupling and subsequent intramolecular dearomative coupling to give 10H ‐spiro[acridine‐9,1′‐cyclohexa‐2′,5′‐dien‐4′‐ones].  相似文献   

12.
Enzyme‐catalyzed [4+2] cycloaddition has been proposed to be a key transformation process in various natural product biosynthetic pathways. Recently Fsa2 was found to be involved in stereospecific trans‐decalin formation during the biosynthesis of equisetin, a potent HIV‐1 integrase inhibitor. To understand the mechanisms by which fsa2 determines the stereochemistry of reaction products, we sought an fsa2 homologue that is involved in trans‐decalin formation in the biosynthetic pathway of an enantiomerically opposite analogue, and we found phm7, which is involved in the biosynthesis of phomasetin. A decalin skeleton with an unnatural configuration was successfully constructed by gene replacement of phm7 with fsa2, thus demonstrating enzymatic control of all stereochemistry in the [4+2] cycloaddition. Our findings highlight enzyme‐catalyzed [4+2] cycloaddition as a stereochemically divergent step in natural product biosynthetic pathways and open new avenues for generating derivatives with different stereochemistry.  相似文献   

13.
A photocatalytic H2 production system using an inorganic–bio hybrid photocatalyst could contribute to the efficient utilization of solar energy, but would require the development of a new approach for preparing a H2‐forming biocatalyst. In the present study, we constructed a recombinant strain of Escherichia coli expressing the genes encoding the [FeFe]‐hydrogenase and relevant maturases from Clostridium acetobutylicum NBRC 13948 for use as a biocatalyst. We investigated the direct application of a whole‐cell of the recombinant E. coli. The combination of TiO2, methylviologen, and the recombinant E. coli formed H2 under light irradiation, demonstrating that whole cells of the recombinant E. coli could be employed for photocatalytic H2 production without any time‐consuming and costly manipulations (for example, enzyme purification). This is the first report of the direct application of a whole‐cell reaction of recombinant E. coli to photocatalytic H2 production.  相似文献   

14.
Rhodium‐catalyzed C7‐selective decarbonylative arylation, olefination, and methylation of indoles with carboxylic acids or anhydrides by C?H and C?C bond activation have been developed. Furthermore, C7‐acylation products can also be generated selectively at a lower reaction temperature in the developed system. The key to the high reactivity and regioselectivity of this transformation is the appropriate choice of an indole N‐PtBu2 chelation‐assisted group. This method has many advantages, including easy access and removal of the directing group, the use of cheap and widely available coupling agents, no requirement of an external ligand or oxidant, a broad substrate scope, high efficiency, and the formation of a sole regioisomer.  相似文献   

15.
Rhodium‐catalyzed C7‐selective decarbonylative arylation, olefination, and methylation of indoles with carboxylic acids or anhydrides by C?H and C?C bond activation have been developed. Furthermore, C7‐acylation products can also be generated selectively at a lower reaction temperature in the developed system. The key to the high reactivity and regioselectivity of this transformation is the appropriate choice of an indole N‐PtBu2 chelation‐assisted group. This method has many advantages, including easy access and removal of the directing group, the use of cheap and widely available coupling agents, no requirement of an external ligand or oxidant, a broad substrate scope, high efficiency, and the formation of a sole regioisomer.  相似文献   

16.
本文以廉价的消旋甲基戊二酸酐为起始原料,完成了具有抗肿瘤活性的海洋天然产物群柱虫内酯(Clavulactone)官能团化的C2-C10片段的立体选择性合成。使用的关键方法包括不对称去对称化获得光学纯手性孤立甲基,和RCM方法构建顺式烯烃。该片段的获得为群柱虫内酯的全合成提供了基础。  相似文献   

17.
The combination of conventional transition‐metal‐catalyzed coupling (2 e? process) and photoredox catalysis (1 e? process) has emerged as a powerful approach to catalyze difficult cross‐coupling reactions under mild reaction conditions. Reported is a palladium carbodicarbene (CDC) complex that mediates both a Suzuki–Miyaura coupling and photoredox catalysis for C?N bond formation upon visible‐light irradiation. These two catalytic pathways can be combined to promote both conventional transition‐metal‐catalyzed coupling and photoredox catalysis to mediate C?H arylation under ambient conditions with a single catalyst in an efficient one‐pot process.  相似文献   

18.
Azafulleroid, amino‐bridged [5,6]‐open fullerene, has the ambident N/C basicity of the incorporated enamine moiety. Acid‐catalyzed arylation of N‐substituted azafulleroids proceeded via two types of initial N/C protonation to perform monoarylation or 1,4‐bisarylation for the N‐alkyl substituents and shuttlecock‐type pentakisarylation for the N‐phenyl substituent. The dramatic product change was explained by considering the possible mechanism as well as the DFT computational results.  相似文献   

19.
王以  吉保明  丁奎岭 《中国化学》2002,20(11):1300-1312
Introduction  Enantioselectiveallylationofcarbonylcompoundsisoneoftheusefulandconvenientmethodfortheprepara tionofopticallyactivesecondaryhomoallylicalcohols .1Althoughnumerousworkonthereactionusingastoichio metricamountofchiralLewisacidshasbeenreporte…  相似文献   

20.
A rhodium(II)‐ or copper(I)‐catalyzed formal intramolecular carbene insertion into vinylic C(sp2)−H bonds is reported herein. This method provides straightforward access to 1H ‐indenes with high efficiency and excellent functional‐group compatibility. Mechanistically, the reaction is proposed to involve the following sequence: metal carbene formation, intramolecular nucleophilic addition of the double bond to the electron‐deficient carbene carbon atom, dearomatization, and finally a 1,5‐H shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号