首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of polysubstituted cyclopropane derivatives in the gold(I)-catalyzed reaction of olefins and propargylic esters is a potentially useful transformation to generate diversity, therefore any method in which its stereoselectivity could be controlled is of significant interest. We prepared and tested a series of chiral gold(I)-carbene complexes as a catalyst in this transformation. With a systematic optimization of the reaction conditions, we were able to achieve high enantioselectivity in the test reaction while the cis:trans selectivity of the transformation was independent of the catalyst. Using the optimized conditions, we reacted a series of various olefins and acetylene derivatives to find that, although the reactions proceeded smoothly and the products were usually isolated in good yield and with good to exclusive cis selectivity, the observed enantioselectivity varied greatly and was sometimes moderate at best. We were unable to establish any structure-property relationship, which suggests that for any given reagent combination, one has to identify individually the best catalyst.  相似文献   

2.
Chemoselective hydrosilylation of functionalized alkenes is difficult to achieve using base‐metal catalysts. Reported herein is that well‐defined bis(amino)amide nickel pincer complexes are efficient catalysts for anti‐Markovnikov hydrosilylation of terminal alkenes with turnover frequencies of up to 83 000 per hour and turnover numbers of up to 10 000. Alkenes containing amino, ester, amido, ketone, and formyl groups are selectively hydrosilylated. A slight modification of reaction conditions allows tandem isomerization/hydrosilylation reactions of internal alkenes using these nickel catalysts.  相似文献   

3.
7‐Oxabenzonorbornadienes derivatives 1 a – d underwent reductive coupling with alkyl propiolates CH3C?CCO2CH3 ( 2 a ), PhC?CCO2Et ( 2 b ), CH3(CH2)3C?CCO2CH3 ( 2 c ), CH3(CH2)4C?CCO2CH3 ( 2 d ), TMSC?CCO2Et ( 2 e ), (CH3)3C?CCO2CH3 ( 2 f ) and HC?CCO2Et ( 2 g ) in the presence of [NiBr2(dppe)] (dppe=Ph2PCH2CH2PPh2), H2O and zinc powder in acetonitrile at room temperature to afford the corresponding 2alkenyl‐1,2‐dihydronapthalen‐1‐ol derivatives 3 a – n with remarkable regio‐ and diastereoselectivity in good to excellent yields. Similarly, the reaction of 7azabenzonorbornadienes derivative 1 e with propiolates 2 a, b and d proceeded smoothly to afford reductive coupling products 2alkenyl‐1,2‐dihydronapthalene carbamates 3 o – p in good yields with high regio‐ and stereoselectivity. This nickel‐catalyzed reductive coupling can be further extended to the reaction of 7oxabenzonorbornene derivatives. Thus, 5,6‐di(methoxymethyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene ( 4 ) reacted with 2 a and 2 d to furnish cyclohexenol derivatives bearing four cis substituents 5 a and b in 81 and 84 % yield, respectively. In contrast to the results of 4 with 2 , the reaction of dimethyl 7oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylate ( 6 ) with propiolates 2 a – d afforded the corresponding reductive coupling/cyclization products, bicyclo[3.2.1]γ‐lactones 7 a – d in good yields. The reaction provides a convenient one‐pot synthesis of γ‐lactones with remarkably high regio‐ and stereoselectivity.  相似文献   

4.
Novel heteroleptic Ni (II) complexes bearing a highly hindered yet flexible IPr* ligand, Ni (IPr*)(PPh3)Br2 ( 1 ) and Ni (IPr*)(PCy3)Br2 ( 2 ) (IPr* = 1,3-bis(2,6-bis (diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene), were easily prepared in 78% and 89% yield, respectively. Both were characterized by elemental analysis and NMR spectroscopy, and 1 was subjected to X-ray crystallography. Compared with 2 and its analogue bearing a less sterically demanding IPr ligand (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene), complex 1 exhibited superior catalytic activity in the magnesium-mediated reductive coupling of benzyl chlorides with aryl chlorides, featuring outstanding tolerance of both coupling partners with steric demand. This study discloses a ligand-facilitated reductive coupling of benzyl chlorides with aryl chlorides, which provides a new and practical synthetic tool for the synthesis of diarylmethanes.  相似文献   

5.
Asymmetric reductive amination of poorly nucleophilic sulfonamides was realized in the presence of nickel catalysts and titanium alkoxide. A wide range of ketones, including enolizable ketones and some biaryl ones, were converted into sulfonamides in excellent enantiomeric excess. The cyclization of sulfamates and intermolecular reductive amination of a diarylphosphinamide were also successful. Formic acid was used as a safe and economic surrogate of high‐pressure hydrogen gas.  相似文献   

6.
7.
Starting from diverse alkene‐tethered aryl iodides and O‐benzoyl‐hydroxylamines, the enantioselective reductive cross‐electrophilic 1,2‐carboamination of unactivated alkenes was achieved using a chiral pyrox/nickel complex as the catalyst. This mild, modular, and practical protocol provides rapid access to a variety of β‐chiral amines with an enantioenriched aryl‐substituted quaternary carbon center in good yields and with excellent enantioselectivities. This process reveals a complementary regioselectivity when compared to Pd and Cu catalysis.  相似文献   

8.
Cation‐binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl ketones in high yield (up to 99 %) and high enantioselectivity (up to 97 % ee). The reaction proceeds with substoichiometric quantities of base (10–20 mol % KOt‐Bu) and open to air. In the case of trifluoromethyl vinyl ketones, excellent chemo‐selectivity was observed, generating 1,2‐addition products exclusively over 1,4‐addition products. UV‐vis analysis revealed the pendant oligo‐ether group of the catalyst strongly binds to the potassium cation (K+) with 1:1 binding stoichiometry (Ka=6.6×105 m ?1).  相似文献   

9.
The dehydrogenation of organosilanes (RxSiH4−x) under the formation of Si−Si bonds is an intensively investigated process leading to oligo- or polysilanes. The reverse reaction is little studied. To date, the hydrogenolysis of Si−Si bonds requires very harsh conditions and is very unselective, leading to multiple side products. Herein, we describe a new catalytic hydrogenation of oligo- and polysilanes that is highly selective and proceeds under mild conditions. New low-valent nickel hydride complexes are used as catalysts and secondary silanes, RR′SiH2, are obtained as products in high purity.  相似文献   

10.
An asymmetric reductive amination of ketones using both arylamines and benzhydrazide in the presence of nickel catalysts was developed. A one‐pot synthesis of tetrahydroquinoxalines was also developed starting directly from α‐ketoaldehydes and 1,2‐diaminobenzene. Formic acid was used as a safe and economic surrogate for high‐pressure hydrogen gas. Strongly σ‐donating bis(alkylphosphine)s are crucial ancillary ligands for both stereoselective hydride insertion and decarboxylation of the formate.  相似文献   

11.
12.
A combinatorial nickel‐catalyzed monofluoroalkylation of aryl halides with unactivated fluoroalkyl halides by reductive cross‐coupling has been developed. This method demonstrated high efficiency, mild conditions, and excellent functional‐group tolerance, thus enabling the late‐stage monofluoroalkylation of diverse drugs. The key to success was the combination of diverse readily available bidentate and monodentate pyridine‐type nitrogen ligands with nickel, which in situ generated a variety of readily tunable catalysts to promote fluoroalkylation with broad scope with respect to both coupling partners. This combinatorial catalysis strategy offers a solution for nickel‐catalyzed reductive cross‐coupling reactions and provides an efficient way to synthesize fluoroalkylated druglike molecules for drug discovery.  相似文献   

13.
Ethylene Oligomerization Catalyzed by Nickel(Ⅱ) Diimine Complexes   总被引:1,自引:0,他引:1  
Ethylene oligomerization has been investigated by using catalyst systems composed of nickel(II) diimine complexes (diimine = N, N′‐o‐phenylene bis (salicylideneaminato), N, N′‐o‐phenylenebisbenzal, N, N′‐ethylenebisbenzal) and ethylaluminoxane (EAO). The main products in toluene and at 110–200 °C were olefins with low carbon numbers (C4—C10). Effects of reaction temperature, Al/Ni molar ratio and reaction period on both the catalytic activity and product distribution were explored. The activity of 1.84 × 105 g of oligomer/(molNI · h), with 87.4% of selectivity to C4—C10 olefins, was attained at 200 °C in the reaction when a catalyst composed of NiCl2 (PhCH = o‐NC6H4N = CHPh) and EAO was used.  相似文献   

14.
IntroductionLow carbonlinearα olefinsareusedprimarilyasco monomersfortheproductionoflinearlowdensitypolyethylene (LLDPE) ,plasticizersandsyntheticlubri cants .Inrecentyears ,muchattentionhasbeenattractedtothefieldofcatalyticbehavioroflatetransitionmetalcom…  相似文献   

15.
Disclosed here an amine-catalyzed reductive aldol-condensation followed by an intramolecular reductive Michael-addition cascade employing Hantzsch ester as hydride source to a keto-bis-enone to provide enantio- and diastereoselective benzannulated diquinanes having three consecutive stereocenters, one of which is an all-carbon quaternary formyl stereocenter. Interestingly, on changing a tether connecting the ketone and an enone moiety from an aliphatic to an aromatic, a change in reactivity is observed. In this case, instead of the above-mentioned reductive aldol condensation, an asymmetric aldol reaction occurs, followed by an iminium/enamine isomerization and, finally diastereoselective Michael addition reaction occurs. As a result, a bis-benzannulated diquinane is obtained with vicinal congested quaternary chiral centers.  相似文献   

16.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

17.
Reported herein is the first direct, metal‐catalyzed reductive functionalization of secondary amides to give functionalized amines and heterocycles. The method is shown to have exceptionally broad scope with respect to suitable nucleophiles, which cover both hard and soft C nucleophiles as well as a P nucleophile. The reaction exhibits good chemoselectivity and tolerates several sensitive functional groups.  相似文献   

18.
A stereoselective nickel‐catalyzed [2+2] cycloaddition of ene‐allenes is reported. This transformation encompasses a broad range of ene‐allene substrates, thus providing efficient access to fused cyclobutanes from easily accessed π‐components. A simple and inexpensive first‐row catalytic system comprised of [Ni(cod)2] and dppf was used in this process, thus constituting an attractive approach to synthetically challenging cyclobutane frameworks under mild reaction conditions.  相似文献   

19.
A highly enantio- and regioselective hydroarylation process of vinylarenes with aryl halides has been developed using a NiH catalyst and a new chiral bis imidazoline ligand. A broad range of structurally diverse, enantioenriched 1,1-diarylalkanes, a structure found in a number of biologically active molecules, have been obtained with excellent yields and enantioselectivities under extremely mild conditions.  相似文献   

20.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号