首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN)4]·2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN)4]·2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Mössbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to a monoclinic structure (P21/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN)4]·2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN)4] layer. In the paramagnetic region for Ni[Ni(CN)4]·2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected.  相似文献   

2.
In this work, pyrazine ( A ), aminopyrazine ( B ), quinoxaline ( C ), and 5,6,7,8-tetrahydroquinoxaline ( D ) have been screened out among a large number of pyrazine derivatives to construct Hofmann-type metal–organic frameworks (MOFs) Fe(L)[M(CN)4] (M=Pt, Pd) with similar 3D pillared-layer structures. X-ray single-crystal diffraction reveals that the alternate linkage between M and FeII ions through cyano bridges forms the 2D extended metal cyanide sheets, and ligands A – D acted as vertical columns to connect the 2D sheets to give 3D pillared-layer structures. Subsequently, a series of bivariate MOFs were constructed by pairwise combination of the four ligands A–D , which were confirmed by 1H NMR, PXRD, FTIR, and Raman spectroscopy. The results demonstrated that ligand size and crystallization rate play a dominant role in constructing bivariate Hofmann-type MOFs. More importantly, the spin-crossover (SCO) properties of the bivariate MOFs can be finely tuned by adjusting the proportion of the two pillared ligands in the 3D Hofmann-type structures. Remarkably, the spin transition temperatures, Tc↑ and Tc↓ of Fe( A )x( B )1−x[Pt(CN)4] (x=0 to 1) can be adjusted from 239 to 254 K and from 248 to 284 K, respectively. Meanwhile, the width of the hysteresis loops can be widened from 9 to 30 K. Changing Pt to Pd, the hysteresis loops of Fe( A )x( B )1−x[Pd(CN)4] can be tuned from 9 (Tc↑=215 K, Tc↓=206 K) to 24 K (Tc↑=300 K, Tc↓=276 K). This research provides wider implications in the development of advanced bistable materials, especially in precisely regulating SCO properties.  相似文献   

3.
Organic–inorganic hybrid perovskite-type multiferroics have attracted considerable research interest owing to their fundamental scientific significance and promising technological applications in sensors and multiple-state memories. The recent achievements with divalent metal dicyanamide compounds revealed such malleable frameworks as a unique platform for developing novel functional materials. Herein, two 3D organic–inorganic hybrid perovskites [Et3P(CH2)2F][Mn(dca)3] ( 1 ) and [Et3P(CH2)2Cl][Mn(dca)3] ( 2 ) (dca=dicyanamide, N(CN)2) are presented. Accompanying the sequential phase transitions, they display a broad range of intriguing physical properties, including above room temperature ferroelastic behavior, switchable dielectricity, and low-temperature antiferromagnetic ordering (Tc=2.4 K for both 1 and 2 ). It is also worth noting that the spontaneous strain value of 1 is far beyond that of 2 in the first ferroelastic phase, as a result of the precise halogen substitution. From the point view of molecular design, this work should inspire further exploration of multifunctional molecular materials with desirable properties.  相似文献   

4.
Ferroelectric photovoltaics driven by spontaneous polarization (Ps) holds a promise for creating the next-generation optoelectronics, spintronics and non-volatile memories. However, photoactive ferroelectrics are quite scarce in single homogeneous phase, owing to the severe Ps fatigue caused by leakage current of photoexcited carriers. Here, through combining inorganic and organic components as building blocks, we constructed a series of ferroelectric semiconductors of 2D hybrid perovskites, (HA)2(MA)n-1PbnBr3n+1 (n=1–5; HA=hexylamine and MA=methylamine). It is intriguing that their Curie temperatures are greatly enhanced by reducing the thickness of inorganic frameworks from MAPbBr3 (n=∞, Tc=239 K) to n=2 (Tc=310 K, ΔT=71 K). Especially, on account of the coupling of room-temperature ferroelectricity (Ps≈1.5 μC/cm2) and photoconductivity, n=3 crystal wafer was integrated as channel field effect transistor that shows excellent a large short-circuit photocurrent ≈19.74 μA/cm2. Such giant photocurrents can be modulated through manipulating gate voltage in a wide range (±60 V), exhibiting gate-tunable memory behaviors of three current states (“-1/0/1” states). We believe that this work sheds light on further exploration of ferroelectric materials toward new non-volatile memory devices.  相似文献   

5.
Y2[Pt(CN)4]321H2O (YCP) crystallizes in a columnar structure type with a mean in-chain PtPt distance of R = 3.18 A. At Tc = (218.5 ± 1) K YCP undergoes a first order phase transformation which is investigated spectroscopically (polarized emission) and thermodynamically (specific heat and differential thermal analysis). It is possible to record polarized emission spectra from the high temperature phase (phase I) T >Tc, the low temperature phase (phase II) T <Tc, and the supercooled phase I. From the spectroscopic data we deduce a PtPt distance reduction (at Tc) of ΔR = (?0.04 ± 0.005) A. The enthalpy of the transition from phase I to phase II is about +1500 J/mole.  相似文献   

6.
Potassium Hexacyano-mianganate(IV): Preparation and Spectra K2[Mn(CN)6] and so far not described K2[Mn(CN)6] · 3DMF were prepared in analytical purity. IR, Raman and UV spectra of both compounds are given and discussed. The spin-forbidden 2Eg, 2T1g4A2g transition proves the Racah parameter B55 and the nephelauxetic ratio β55 to be 651 em?l and 0.61 respectively.  相似文献   

7.
Colourless octahedral single crystals of solvent‐free Ag2[B12Cl12] (cubic, Pa3¯; a = 1238.32(7) pm, Z = 4) are obtained by the metathesis reaction of Cs2[B12Cl12] with an aqueous solution of silver nitrate (AgNO3) and recrystallization of the crude product from water. The crystal structure is best described as a distorted anti‐CaF2‐type arrangement in which the quasi‐icosahedral [B12Cl12]2— anions (d(B—B) = d(B—Cl) = 177—180 pm) are arranged in a cubic closest‐packed fashion. The tetrahedral interstices are filled with Ag+ cations which are strongly displaced from their ideal positions. Thereby each silver atom gets coordinated by six chlorine atoms from the edges of three [B12Cl12]2— anions providing a distorted octahedral coordination sphere to the Ag+ cations (d(Ag—Cl) = 283—285 pm, CN = 6).  相似文献   

8.
Physical properties of a series of homologous RE-B-C(N) B12 cluster compounds REB17CN, REB22C2N, and were investigated. The structures of the compounds are layer-like along the c-axis, with rare earth and B6 octahedral layers separated by B12 icosahedral and C-B-C chain layers whose number increases successively from two B12 layers for the REB17CN compound to four for the REB28.5C4 compound. The rare earth atoms are configured in two triangular flat layers which are stacked on top of one another in AB stacking where the nearest-neighbor rare earth directions are the three atoms forming a triangle in the adjacent layer. The series of homologous compounds exhibit a spin glass transition with Tf shifting in correspondence with variations of the basal plane lattice constants, consistent with the magnetic interaction being effective in the basal planes. The isothermal remanent magnetization shows a stretched exponential decay . Exponents determined for the different homologous compounds were scaled as a function of Tr=T/Tf and found to follow the empirical dependency determined for typical spin glasses. It is indicated that a mixture of disorder originating from the partial occupancy of the rare earth sites and frustration of interactions due to the unique configuration is responsible for the manifestation of spin glass transitions in these homologous systems.  相似文献   

9.
Using single-crystal, automated diffractometer techniques, the linear coefficient of thermal expansion has been determined for La0.62Pb0.38MnO3 from 298 to 627 K. The linear coefficient of thermal expansion is observed to undergo a change from 7.2 × 10?5 Å/K for T < Tc to 10.8 × 10?5 Å/K for T > Tc. It is concluded that while the rhombohedral distortion in the (La, Pb)MnO3 system can be understood qualitatively on the basis of ionic size and polarizability considerations alone, the quantitative systematics of the distortion parameters and the change in the linear thermal expansion coefficient at Tc indicate a significant coupling between the elastic and magnetic exchange forces.  相似文献   

10.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

11.
We describe the preparation and structural characterization of four In-containing perovskites from neutron powder diffraction (NPD) and X-ray powder diffraction (XRPD) data. Sr3In2B″O9 and Ba(In2/3B1/3)O3 (B″=W, U) were synthesized by standard ceramic procedures. The crystal structure of the W-containing perovskites and Ba(In2/3U1/3)O3 have been revisited based on our high-resolution NPD and XRPD data, while for the new U-containing perovskite Sr3In2UO9 the structural refinement was carried out from high-resolution XRPD data. At room temperature, the crystal structure for the two Sr phases is monoclinic, space group P21/n, where the In atoms occupy two different sites Sr2[In]2d[In1/3B2/3]2cO6, with a=5.7548(2) Å, b=5.7706(2) Å, c=8.1432(3) Å, β=90.01(1)° for B″=W and a=5.861(1) Å, b=5.908(1) Å, c=8.315(2) Å, β=89.98(1)° for B″=U. The two phases with A=Ba should be described in a simple cubic perovskite unit cell (S.G. Pmm) with In and B″ distributed at random at the octahedral sites, with a=4.16111(1) Å and 4.24941(1) Å for W and U compounds, respectively.  相似文献   

12.
We show that cation ordering on A site columns, oppositely displaced via coupling to B site octahedral tilts, results in a polar phase of the columnar perovskite (NaY)MnMnTi4O12. This scheme is similar to hybrid improper ferroelectricity found in layered perovskites, and can be considered a realisation of hybrid improper ferroelectricity in columnar perovskites. The cation ordering is controlled by annealing temperature and when present it also polarises the local dipoles associated with pseudo-Jahn–Teller active Mn2+ ions to establish an additional ferroelectric order out of an otherwise disordered dipolar glass. Below TN≈12 K, Mn2+ spins order, making the columnar perovskites rare systems in which ordered electric and magnetic dipoles may reside on the same transition metal sublattice.  相似文献   

13.
A new layered perovskite-type organic–inorganic hybrid compound: [Cl-(CH2)2-NH3]2[CuCl4] ( 1 ), in which 2-chloroethylammonium cation occupies the space enclosed by the CuCl6 octahedra, has been successfully synthesized. It is found that the compound exhibits the semiconducting properties with the optical band gap equal to 1.98 eV, confirmed by AC conductivity measurements, which varies between 10−5 and 10−4 Ω−1 m−1. Also, the low activation energy at low temperatures (0.26 eV) can indicate the electronic conduction of this material. Compound ( 1 ) displays phase transitions at T1 = 281 K and T2 = 380 K, confirmed by DSC, electrical and dielectric measurements. Single-crystal X-ray diffraction data at variable temperatures reveal that symmetry-breaking occurs from P21/c (at 296 K ˃ T1) to P-1 (at 150 K ˂ T1), originating directly from the [Cl-(CH2)2-NH3]+ cation conformational changes and the distortions of CuCl64− octahedra caused by the Jahn-Teller effect in the inorganic layers. Meanwhile, organic 2-chloroethylammonium moieties display some boat-like conformation below T1, which transforms to a chair-like structure above T1. This study paves the pathway to explore new lead-free hybrid perovskites with targeted properties for thermoelectric, supercapacitors, batteries, environmentally friendly processing and semiconductor applications.  相似文献   

14.
Colourless, lath‐shaped single crystals of Cs2[B12I12] · 2 CH3CN (monoclinic, C2/m; a = 1550.3(2), b = 1273.2(1), c = 1051.5(1) pm, β = 120.97(1)°; Z = 2) are obtained by the reaction of Cs2[B12H12] with an excess of I2 and ICl (molar ratio: 1 : 2) in methylene iodide (CH2I2) at 180 °C (8 h) and recrystallization of the crude product from acetonitrile (CH3CN). The crystal structure contains quasi‐icosahedral [B12I12]2– anions (d(B–B) = 176–182 pm, d(B–I) = 211–218 pm) which arrange in a cubic closest‐packed fashion. All octahedral interstices are filled with centrosymmetric dimer‐cations {[Cs(N≡C–CH3)]2}2+ containing a diamond‐shaped four‐membered (Cs–N–Cs–N) ring of Cs+ cations and nitrogen atoms of the solvating acetonitrile molecules (d(Cs–N) = 321 pm, 2 ×). The cesium cations themselves actually reside in the distorted tetrahedral voids of the cubic [B12I12]2– packing (d(Cs–I) = 402–461 pm, 10 ×) if one ignores the solvent particles.  相似文献   

15.
The heat capacities of eight chlorine boracites T3B7O13Cl (T=Cr, Mn, Fe, Co, Ni, Cu, Zn or Mg) have been measured in the temperature range 2 to 100 K. Magnetic phase transitions occur below 20 K in the compounds studied except in the two non-magnetic substances Zn3B7O13Cl and Mg3B7O13Cl. The magnetic specific heat capacities give information on magnetic ground state of the transition metals and the entropy related to the phase transitions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Preparation, Spectroscopic Characterization and Crystal Structures of Mercury(II)‐bis(tetracyanoborate) Hg[B(CN)4]2 and Dimercury(I)‐bis(tetracyanoborate) Hg2[B(CN)4]2 Hg[B(CN)4]2 ( 1 ) is synthesised by the reaction between Hg(NO3)2 and K[B(CN)4]2. In a comproportionation reaction of 1 with elemental mercury the corresponding mercury(I) salt Hg2[B(CN)4]2 ( 2 ) is obtained. The compounds were characterised by vibrational‐ and NMR‐spectroscopy, and their crystal structures were determined. Hg[B(CN)4]2 crystallizes in the trigonal system in the space group P3¯m1 with a = 781.75(3) pm, c = 601.68(2) pm, V = 318.44(2)Å3, and one formula unit per unit cell. For Hg2[B(CN)4]2 an orthorhombic unit cell with a = 568.9(1) pm, b = 3280.9(7) pm, c = 601.68(2) pm, V = 1389.6(5)Å, and Z = 4 is observed.  相似文献   

17.
Change of a local environment of a polar pyridinium ion, which is associated with the phase transition of crystalline pyridinium tetrachloroiodate(III) at Tc = 217 K, was investigated by a single crystal X-ray analysis and dielectric and heat capacity measurements. The site symmetry 2/m of the ion at T > Tc indicates an orientational disorder in the high-temperature phase (HTP). The energy difference ΔE between the stable and meta-stable orientations of the pyridinium ion at the 2/m site was estimated to be ΔE/R ? 560 K at 280 K in the HTP. Below the Tc, an antiferroelectric ordering of the ions was revealed.  相似文献   

18.
The crystal structure, spectroscopic and thermal properties of ammonium dicyanamide NH4[N(CN)2] have been thoroughly investigated by means of temperature-dependent single-crystal X-ray and neutron powder diffraction, vibrational and MAS-NMR spectroscopy as well as thermoanalytical measurements. The comprehensive elucidation of structural details is of special interest with respect to the unique solid-state transformation of ammonium dicyanamide into dicyandiamide. This reaction occurs at temperatures >80°C and it represents the isolobal analogue of Wöhler's historic transformation of ammonium cyanate into urea. NH4[N(CN)2] crystallizes in the monoclinic space group P21/c with lattice constants a=3.7913(8), b=12.412(2), c=9.113(2) Å, β=91.49(2)° and Z=4 (single-crystal X-ray data, T=200 K). The temperature dependence of the lattice constants shows anisotropic behavior, however, no evidence for phase transitions in the investigated temperature range was observed. The hydrogen positions could be localized by neutron diffraction (10-370 K), and the temperature-dependent behavior of the ammonium group has been analyzed by Rietveld refinements using anisotropic thermal displacement parameters. They were interpreted by utilizing a rigid body model and extracting the libration and translation matrices of the ammonium ion by applying the TLS formalism. The results obtained by the diffraction methods were confirmed and supplemented by vibrational spectroscopy and solid-state 15N and 13C MAS-NMR investigations.  相似文献   

19.
The self‐assembly of iron(II) ions with rare octacyanidorhenate(V) metalloligands in a methanolic solution results in the formation of a nanometric pentadecanuclear {FeII9[ReV(CN)8]6(MeOH)24}?10 MeOH ( 1 ) molecule with a six‐capped body‐centered cubic topology. The cluster demonstrates a thermally‐induced spin‐crossover phase transition at T1/2=195 K which occurs selectively for a single FeII ion embedded in the center of a cluster core.  相似文献   

20.
New Oxychlorides of the Rare-Earth Metals with Vanadium and Rhenium i) New compounds Ln12.33V6O23(OH)Cl20 (Ln = La, Ce) were prepared by heating mixtures of LnCl3, LnOCl and V2O5 (4 : 8 : 3) in evacuated, sealed silica ampoules (850 °C, 4 d). Single crystals could be obtained by chemical vapor transport (T2 → T1, T2 = 900 °C, T1 = 800 °C, 14 d, p(Cl2, 298 K) ≈ 70 mbar). The single-crystal study of the lanthanum compound [a = 17.8818(25) Å, c = 4.0567(7) Å, Z = 1, 1035 independent I0, 70 parameters, R1 = 3.52%] showed that vanadium has CN = 4 (tetrahedrally) and lanthanum has CN = 9 (threefold capped trigonal prismatic). A strong relationship to the structures of the Pr3NbO4Cl6- and the La2TaO4Cl3-type could be discussed. ii) Further we obtained dark red powder of La3ReO6Cl3 by heating (740 °C, 5 d) a mixture of ReO3 and LaOCl (1 : 3) in sealed silica ampoules under argon atmosphere (p{Ar, 298 K} = 1 atm). This new rhenium-compound crystallizes in the hexagonal space group P63/m (No. 176) [a = 9.4164(6) Å, c = 5.4248(4) Å] and is isostructural to La3WO6Cl3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号