首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new and unusual synthesis of benzothiazine‐fused pyrrolo[3,4‐c]coumarins, involving the ring‐opening of coumarin‐based dihydrobenzothiazoles and subsequent [4+1] cycloaddition reaction with isocyanides, was described. Thus, simple heating of various 3‐(2,3‐dihydro‐2‐methylbenzo[d]thiazol‐2‐yl)coumarins with isocyanides produced the title compounds in good yields under solvent‐free conditions.  相似文献   

2.
Reaction of substituted o‐aminobenzyl chlorides with isocyanides in the presence of a weak base (NaHCO3) at room temperature afforded the diversely functionalized 2‐aminoindoles in good to excellent yields. A formal [4+1] cycloaddition of the in situ generated aza‐ortho‐xylylenes with isocyanides accounted for the reaction outcome.  相似文献   

3.
The reactions of butadienylketene with variety of 1,4‐diazabuta‐1,3‐dienes are studied. The reactions resulted in the formation of previously unknown functionalized cis butadienyl‐4‐iminomethyl‐azetidin‐2‐ones and butenylidene‐butadienyl‐[2,2′‐biazetidine]‐4,4′‐ diones. Butadienyl ketene reacts in [2+2] cycloaddition fashion with both iminic portion of 1,4‐ diazabuta‐1,3‐dienes and competitive [4+2] cycloaddition reaction of 1,4‐diazabuta‐1,3‐dienes as 4π component with butadienyl ketene as 2π component are not observed.  相似文献   

4.
The reaction of allyl ethyl carbonates with isocyanides in the presence of a catalytic amount of Pd(OAc)2 provided ketenimines through β‐hydride elimination of the allyl imidoylpalladium intermediates. The insertion of the isocyanide into the π‐allyl Pd complex proceeded via an unusual η1‐allyl Pd species. The resulting ketenimines were hydrolyzed to β,γ‐unsaturated carboxamides during purification by flash column chromatography on silica gel or converted in situ into 1,5‐disubstituted tetrazoles by [3+2] cycloaddition with hydrazoic acid or trimethylsilyl azide.  相似文献   

5.
The reaction of prop‐1‐ene‐1,3‐sultone 1 with a variety of nitrile oxides 3 afforded novel [3+2] cycloaddition products 4 in good yield. The cycloaddition reaction achieved excellent regioselectivity.  相似文献   

6.
The theoretical background of the formation of N‐heterocyclic oxadiazoline carbenes through a metal‐assisted [2+3]‐dipolar cycloaddition (CA) reaction of nitrones R1CH?N(R2)O to isocyanides C?NR and the decomposition of these carbenes to imines R1CH?NR2 and isocyanates O?C?NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be “carbenophilic” metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π‐back donation, namely, AuI, AuIII, PtII, PtIV, ReV, and PdII metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMOCNR and the charge on the N atom of the C?N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl‐substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl‐substituted species, and the N,N,C‐alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives.  相似文献   

7.
A visible‐light‐induced photocatalytic aerobic oxidation/[3+2] cycloaddition/aromatization cascade between secondary amines and isocyanides has been successfully developed. The reaction provides a general and efficient access to diversely substituted imidazoles and imidazo[1,5‐a]quinoxalin‐4(5 H)‐ones in good yields under mild conditions.  相似文献   

8.
A number of 2‐(dialkylamino)‐5‐(methylthio)imidazoles 2 are obtained by treating the formamidinium iodides 1a,b with isocyanides R3 NC under mild conditions. Reduction of these species can occur in the reaction medium to furnish the corresponding imidazoles 3 . In some cases, double cycloaddition across the imine bond of starting salts 1 also provides the (azetidin‐1‐yl‐methylene)ammonium iodides 4 . Reactions with tert‐butyl and isopropyl isocyanides in refluxing acetonitrile convert the acetamidinium iodide 1c into the 3,5‐diamino‐2H‐pyrrolium salts 7 . Mechanisms are suggested to account for these ring‐closure processes. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:370–376, 2000  相似文献   

9.
The reaction of 2‐(2‐methylaziridin‐1‐yl)‐3‐ureidopyridines 12 with triphenylphosphine, carbon tetra‐chloride, and triethylamine (Appel's conditions) led to the corresponding carbodiimides 13 , which underwent intramolecular cycloaddition reaction with aziridine under the reaction conditions to give the pyridine‐fused heterocycles, 2,3‐dihydro‐1H‐imidazo[2′,3′:2,3]imidazo[4,5‐b]pyridines 16 and 12,13‐dihydro‐5H‐1,3 ‐benzodiazepino [2′,3′:2,3] imidazo[4,5‐b]pyridines 17 .  相似文献   

10.
Over the past years, the metal‐catalyzed dearomative cycloaddition of 3‐nitroindoles and 2‐nitrobenzofurans have emerged as a powerful protocol to construct chiral fused heterocyclic rings. However, organocatalytic dearomative reaction of these two classes of heteroarenes has become a long‐standing challenging task. Herein, we report the first example of phosphine‐catalyzed asymmetric dearomative [3+2]‐cycloadditio of 3‐nitroindoles and 2‐nitrobenzofurans, which provide a new, facile, and efficient protocol for the synthesis of chiral 2,3‐fused cyclopentannulated indolines and dihydrobenzofurans by reacting with allenoates and MBH carbonates, respectively through a dearomative [3+2]‐cycloaddition.  相似文献   

11.
The cycloadditions of (E)‐3‐diazenylbut‐2‐enes 1 with a variety of alkenes 2 – 6 were carried out in water as well as in organic solvents. The reactions were always faster in heterogeneous aqueous medium than in the organic solvents. These conjugated diazenyl‐alkenes behave mainly as heterodienes, and the Diels‐Alder adducts are the sole or at least main reaction products. Pyrroles derived from zwitterionic [3+2] cycloaddition reactions were observed in some cases. The cycloaddition of 1a with (+)‐2‐(ethenyloxy)‐3,7,7‐trimethylbicyclo[4.1.0]heptane ( 5 ) is the first example of an asymmetric `inverse electron‐demand' Diels‐Alder reaction carried out in pure water.  相似文献   

12.
Several 2‐alkylquinolizinium‐1‐olates 9 , i.e., heterobetaines, were prepared from ketone 11 , the latter being readily available either from pyridine‐2‐carbaldehyde via a Grignard reaction, followed by oxidation with MnO2, or from 2‐picolinic acid (=pyridine‐2‐carboxylic acid) via the corresponding Weinreb amide and subsequent Grignard reaction. Mesoionic heterobetaines such as quinolizinium derivatives have the potential to undergo cycloaddition reactions with double and triple bonds, e.g., 1,3‐dipolar cycloadditions or Diels? Alder reactions. We here report on the scope and limitations of cycloaddition reactions of 2‐alkylquinolizinium‐1‐olates 9 with electron‐poor acetylene derivatives. As main products of the reaction, 5‐oxopyrrolo[2,1,5‐de]quinolizines (=‘[2.3.3]cyclazin‐5‐ones’) 19 were formed via a regioselective [2+3] cycloaddition, and cyclohexadienone derivatives, formed via a Diels? Alder reaction, were obtained as side products. The structures of 2‐benzylquinolizinium‐1‐olate ( 9a ) and two ‘[2.3.3]cyclazin‐5‐ones’ 19i and 19l were established by X‐ray crystallography.  相似文献   

13.
1,10‐Phenanthroline reacts with malonitrile and aldehydes in the presence of isocyanides as domino‐Knoevenagel‐nucleophilic cycloaddition for generation of a new class of 10‐(aryl)‐11‐(alkyl‐ or arylamino‐)pyrrolo[1,2‐a][1,10]phenanthroline‐9‐carbonitrile compounds in excellent yield. All compounds are fully characterized with one structurally authenticated by a single X‐ray diffraction study.  相似文献   

14.
α‐Imidazolformylarylhydrazine 2 and α‐[1,2,4]triazolformylarylhydrazine 3 have been synthesized through the nucleophilic substitution reaction of 1 with imidazole and 1,2,4‐triazole, respectively. 2,2′‐Diaryl‐2H,2′H‐[4,4′]bi[[1,2,4]‐triazolyl]‐3,3′‐dione 4 was obtained from the cycloaddition of α‐chloroformylarylhydrazine hydrochloride 1 with 1,2,4‐triazole at 60 °C and in absence of n‐Bu3N. The inducing factor for cycloaddition of 1 with 1,2,4‐triazole was ascertained as hydrogen ion by the formation of 4 from the reaction of 3 with hydrochloric acid. 4 was also acquired from the reaction of 3 with 1 and this could confirm the reaction route for cycloaddition of 1 with 1,2,4‐triazole. Some acylation reagents were applied to induce the cyclization reaction of 2 and 3.1 possessing chloroformyl group could induce the cyclization of 2 to give 2‐aryl‐4‐(2‐aryl‐4‐vinyl‐semicarbazide‐4‐yl)‐2,4‐dihydro‐[1,2,4]‐triazol‐3‐one 6. 7 was obtained from the cyclization of 2 induced by some acyl chlorides. Acetic acid anhydride like acetyl chloride also could react with 2 to produce 7D . 5‐Substituted‐3‐aryl‐3H‐[1,3,4]oxadiazol‐2‐one 8 was produced from the cyclization reaction of 3 induced by some acyl chlorides or acetic acid anhydride. The 1,2,4‐triazole group of 3 played a role as a leaving group in the course of cyclization reaction. This was confirmed by the same product 8 which was acquired from the reaction of 1 , possessing a better leaving group: Cl, with some acyl chlorides or acetic acid anhydride.  相似文献   

15.
Fluorine‐containing β‐amino acids and their derivatives have attracted significant attention due to their importance in life sciences. Herein the previously unknown difluoroketenimine, the analogue of the elusive difluoroketene, has been generated by the reaction of difluorocarbene and isocyanide, which further undergoes [2+2] cycloaddition with imine. The three‐component reaction affords α,α‐difluoro‐β‐amino amides in good yields. Mechanistic studies reveal the unique properties of the difluoroketenimine in the [2+2] cycloaddition with imine.  相似文献   

16.
A metal‐free [2+2] cycloaddition and 1,4‐addition sequence induced by S‐centered radicals has been achieved by treating benzene‐linked allene‐ynes with aryldiazonium tetrafluoroborates and DABCO‐bis(sulfur dioxide) in a one‐pot procedure. The reaction provides a greener and more practical access to functionalized cyclobuta[a]naphthalen‐4‐ols with valuable applications. More than 50 examples are demonstrated with excellent diastereoselectivity and chemical yields. The reaction pathway is proposed to proceed by the following steps:[2+2] cycloaddition, insertion of SO2, 1,4‐addition, diazotization, and tautomerization.  相似文献   

17.
2a,4‐Disubstituted 2‐phthalimido‐2a,3,4,5‐tetrahydro‐1H‐azeto[2,1‐d][1,5]benzothiazepin‐1‐ones were synthesized by cycloaddition reactions of 2,4‐disubstituted 2,3‐dihydro‐1,5‐benzothiazepines and phthalimidoketene, generated from phthalimidoacetyl chloride, in the presence of triethylamine in anhydrous benzene. The stereochemistry was discussed for the cycloaddition reaction. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:276–279, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10029  相似文献   

18.
The novel coumarin‐3‐carboxamides (=2‐oxo‐2H‐1‐benzopyran‐3‐carboxamides) 5a – 5g containing lipophilic spacers were synthesized through the Ugi‐four‐component reaction (Scheme 1). The reactions of aromatic aldehydes 1 , 4,4′‐oxybis[benzenamine] or 4,4′‐methylenebis[benzenamine] as diamine 2 , coumarin‐3‐carboxylic acid (=2‐oxo‐2H‐benzopyran‐3‐carboxylic acid; 3 ), and alkyl isocyanides 4 lead to the desired substituted coumarin‐3‐carboxamides 5a – 5g at room temperature with high bond‐forming efficiency. These novel coumarin derivatives exhibit brilliant fluorescence at 544 nm in CHCl3.  相似文献   

19.
The Sc(OTf)3‐catalyzed [3+2] cycloaddition of allylsilanes to β‐silyl‐α,β‐unsaturated ketones (β‐silylenones) has been developed to form five‐membered syn‐1,3‐disilylketones diastereoselectively through the rearrangement of the silicon substituents on the allylsilane. Stabilization of the carbocation intermediates by a double silicon effect plays a key role in directing the course of the reaction to favor the [3+2] cycloaddition pathway over simple allylation.  相似文献   

20.
An effective and practical method has been developed for the diversity‐oriented synthesis of 1‐alkyl‐3‐aroylindolizines via the 1,3‐dipolar cycloaddition of pyridinium ylides and aliphatic aldehydes in the presence of molecular iodine and a catalytic amount of MnO2. The synthesis proceeds by tandem reactions involving [3+2] cycloaddition, dehydration of the cycloadduct, and dehydroaromatization. Molecular iodine served both as a catalyst and a dehydroaromatization reagent in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号