首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Amphiphilic coil‐rod‐coil molecules, incorporating flexible and rigid blocks, have a strong affinity to self‐organize into various supramolecular aggregates in bulk and in aqueous solutions. In this paper, we report the self‐assembling behavior of amphiphilic coil‐rod‐coil molecular isomers. These molecules consist of biphenyl and phenyl units connected by ether bonds as the rod segment, and poly(ethylene oxide) (PEO) with a degree of polymerization of 7 and 12 as the flexible chains. Their aggregation behavior was investigated by differential scanning calorimetry, thermal optical polarized microscopy, small‐angle X‐ray scattering spectroscopy, and transmission electron microscopy. The results imply that the molecular structure of the rod building block and the length of the PEO chains dramatically influence the creation of supramolecular aggregates in bulk and in aqueous solutions. In the bulk state, these molecules self‐organize into a hexagonal perforated lamellar and an oblique columnar structure, respectively, depending on the sequence of the rod building block. In aqueous solution, the molecule with a linear rod segment self‐assembles into sheet‐like nanoribbons. In contrast, its isomer, with a rod building block substituted at the meta‐position of the aryl group, self‐organizes into nanofibers. This is achieved through the control of the non‐covalent interactions of the rod building blocks.  相似文献   

3.
Modular DNA tile‐based self‐assembly is a versatile way to engineer basic tessellation patterns on the nanometer scale, but it remains challenging to achieve high levels of structural complexity. We introduce a set of general design principles to create intricate DNA tessellations by employing multi‐arm DNA motifs with low symmetry. We achieved two novel Archimedean tiling patterns, (4.8.8) and (3.6.3.6), and one pattern with higher‐order structures beyond the complexity observed in Archimedean tiling. Our success in assembling complicated DNA tessellations demonstrates the broad design space of DNA structural motifs, enriching the toolbox of DNA tile‐based self‐assembly and expanding the complexity boundaries of DNA tile‐based tessellation.  相似文献   

4.
With the goal of imposing shape and structure on supramolecular gels, we combine a low‐molecular‐weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core–shell‐structured gel beads—a rare example of a supramolecular gel formulated inside discrete gel spheres. The self‐assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP‐loaded gel bead can catalyse the Suzuki–Miyaura reaction, constituting a simple and easy‐to‐use reaction‐dosing form. These uniquely shaped and structured LMWG‐filled gel beads are a versatile platform technology with great potential in a range of applications.  相似文献   

5.
The gelation properties of derivatives of N‐alkylated (R)‐12‐hydroxystearic acid hydrazide (n‐HSAH, n=0, 2, 6, 10; n is the length of an n‐alkyl chain on the terminal nitrogen atom) in a wide variety of liquids is reported. The n‐HSAH compounds were derived from a naturally occurring alkanoic acid, (R)‐12‐hydroxystearic acid (R‐12HSA), and although they differ from the analogous N‐alkyl (R)‐12‐hydroxystearamides (n‐HSAA) only by the presence of one N?H group, their behavior as gelators is very different. For example, the parent molecule (0‐HSAH) is a supergelator in ethylene glycol, in which it forms self‐standing gels that are self‐healing, partially thixotropic, moldable, and load‐bearing; gels of 0‐HSAA are not self‐standing. 0‐HSAH is structurally the simplest molecular gelator of which we are aware that is capable of forming both self‐standing and partially thixotropic gels. Also, diffusion of the cationic dye erythrosine B and the anionic dye methylene blue in 0‐HSAH/ethylene glycol gel blocks is much slower than the self‐diffusion of ethylene glycol. Polarizing optical microscopy, X‐ray diffraction, and FTIR studies revealed that the self‐assembled fibrillar networks (SAFINs) of the gels are crystalline, and that 0‐HSAH molecules may be arranged in a triclinic subcell with bilayer stacking. The SAFINs are stabilized by strong hydrogen‐bonding interactions between the hydrazide groups of adjacent molecules and a perpendicular hydrogen‐bonding network between the pendent hydroxyl groups of 0‐HSAH. The other n‐HSAH (n=2, 6, 10) molecules appear to be arranged in orthorhombic subcells with monolayers and strong hydrogen‐bonding interactions between the hydrazide group of one gelator molecule and the hydroxyl group of a neighboring one. These results show how small structural modifications of structurally simple gelator molecules can be exploited to form gels with novel properties that can lead potentially to valuable applications, such as in drug delivery.  相似文献   

6.
One‐dimensional (1D) self‐assemblies of nanocrystals are of interest because of their vectorial and polymer‐like dynamic properties. Herein, we report a simple method to prepare elongated assemblies of semiconductor nanorods (NRs) through end‐to‐end self‐assembly. Short‐chained water‐soluble thiols were employed as surface ligands for CdSe NRs having a wurtzite crystal structure. The site‐specific capping of NRs with these ligands rendered the surface of the NRs amphiphilic. The amphiphilic CdSe NRs self‐assembled to form elongated wires by end‐to‐end attachment driven by the hydrophobic effect operating between uncapped NR ends. The end‐to‐end assembly technique was further applied to CdS NRs and CdSe tetrapods (TPs) with a wurtzite structure.  相似文献   

7.
A molecular Solomon link was synthesized in high yield through the template‐free, coordination‐driven self‐assembly of a carbazole‐functionalized donor and a tetracene‐based dinuclear ruthenium(II) acceptor. The doubly interlocked topology was realized by a strategically chosen ligand which was capable of participating in multiple CH ??? π and π–π interactions, as evidenced from single‐crystal X‐ray analysis and computational studies. This method is the first example of a two‐component self‐assembly of a molecular Solomon link using a directional bonding approach. The donor alone was not responsible for the construction of the Solomon link, and was confirmed by its noncatenane self‐assemblies obtained with other similar ruthenium(II) acceptors.  相似文献   

8.
A major goal of nanotechnology and bioengineering is to build artificial nanomachines capable of generating specific membrane curvatures on demand. Inspired by natural membrane‐deforming proteins, we designed DNA‐origami curls that polymerize into nanosprings and show their efficacy in vesicle deformation. DNA‐coated membrane tubules emerge from spherical vesicles when DNA‐origami polymerization or high membrane‐surface coverage occurs. Unlike many previous methods, the DNA self‐assembly‐mediated membrane tubulation eliminates the need for detergents or top‐down manipulation. The DNA‐origami design and deformation conditions have substantial influence on the tubulation efficiency and tube morphology, underscoring the intricate interplay between lipid bilayers and vesicle‐deforming DNA structures.  相似文献   

9.
Aminocyclopropenium ions have raised much attention as organocatalysts and redox active polymers. However, the self‐assembly of amphiphilic aminocyclopropenium ions remains challenging. The first deltic ionic liquid crystals based on aminocyclopropenium ions have been developed. Differential scanning calorimetry, polarizing optical microscopy and X‐ray diffraction provided insight into the unique self‐assembly and nanosegregation of these liquid crystals. While the combination of small headgroups with linear p‐alkoxyphenyl units led to bilayer‐type smectic mesophases, wedge‐shaped units resulted in columnar mesophases. Upon increasing the size and polyphilicity of the aminocyclopropenium headgroup, a lamellar phase was formed.  相似文献   

10.
We present the formation of a nanobelt by self‐assembly of β‐benzyl GABA (γ‐aminobutyric acid). This simple γ‐amino acid building block self‐assembled to form a well‐defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π–π interactions. This new‐generation self‐assembled single amino acid may serve as a template for functional nanomaterials.  相似文献   

11.
pH‐responsiveness has been widely pursued in dynamic DNA nanotechnology, owing to its potential in biosensing, controlled release, and nanomachinery. pH‐triggering systems mostly depend on specific designs of DNA sequences. However, sequence‐independent regulation could provide a more general tool to achieve pH‐responsive DNA assembly, which has yet to be developed. Herein, we propose a mechanism for dynamic DNA assembly by utilizing ethylenediamine (EN) as a reversibly chargeable (via protonation) molecule to overcome electrostatic repulsions. This strategy provides a universal pH‐responsivity for DNA assembly since the regulation originates from externally co‐existing EN rather than specific DNA sequences. Furthermore, it endows structural DNA nanotechnology with the benefits of a metal‐ion‐free environment including nuclease resistance. The concept could in principle be expanded to other organic molecules which may bring unique controls to dynamic DNA assembly.  相似文献   

12.
13.
Post‐translational modification is a common mechanism to affect conformational change in proteins, which in turn, regulates function. Herein, this principle is expanded to instruct the formation of supramolecular assemblies by controlling the conformational bias of self‐assembling peptides. Biophysical and mechanical studies show that an engineered phosphorylation/dephosphorylation couple can affectively modulate the folding of amphiphilic peptides into a conformation necessary for the formation of well‐defined fibrillar networks. Negative design principles based on the incompatibility of hosting residue side‐chain point charge within hydrophobic environments proved key to inhibiting the peptide's ability to adopt its low energy fold in the assembled state. Dephosphorylation relieves this restriction, lowers the energy barrier between unfolded and folded peptide, and allows the formation of self‐assembled fibrils that contain the folded conformer, thus ultimately enabling the formation of a cytocompatible hydrogel material.  相似文献   

14.
Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light‐emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation‐induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self‐assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high‐sensitivity detection and intracellular fluorescence imaging of biothiols.  相似文献   

15.
One‐dimensional nanowires enable the realization of optical and electronic nanodevices that may find applications in energy conversion and storage systems. Herein, large‐scale aligned DNA nanowires were crafted by flow‐enabled self‐assembly (FESA). The highly oriented and continuous DNA nanowires were then capitalized on either as a template to form metallic nanowires by exposing DNA nanowires that had been preloaded with metal salts to an oxygen plasma or as a scaffold to direct the positioning and alignment of metal nanoparticles and nanorods. The FESA strategy is simple and easy to implement and thus a promising new method for the low‐cost synthesis of large‐scale one‐dimensional nanostructures for nanodevices.  相似文献   

16.
A series of bicholesteryl‐based gelators with different central linker atoms C, N, and O (abbreviated to GC , GN , and GO , respectively) have been designed and synthesized. The self‐assembly processes of these gelators were investigated by using gelation tests, field‐emission scanning electron microscopy, field‐emission transmission electron microscopy, UV/Vis absorption, IR spectroscopy, X‐ray diffraction, rheology, and contact‐angle experiments. The gelation ability, self‐assembly morphology, rheological, and surface‐wettability properties of these gelators strongly depend on the central linker atom of the gelator molecule. Specifically, GC and GN can form gels in three different solvents, whereas GO can only form a gel in N,N‐dimethylformamide (DMF). Morphologies from nanofibers and nanosheets to nanospheres and nanotubes can be obtained with different central atoms. Gels of GC , GN , and GO formed in the same solvent (DMF) have different tolerances to external forces. All xerogels gave a hydrophobic surface with contact angles that ranged from 121 to 152°. Quantum‐chemical calculations indicate that the GC , GN , and GO molecules have very different steric structures. The results demonstrate that the central linker atom can efficiently modulate the molecular steric structure and thus regulate the supramolecular self‐assembly process and properties of gelators.  相似文献   

17.
G‐quadruplex (G4) structures are of general importance in chemistry and biology, such as in biosensing, gene regulation, and cancers. Although a large repertoire of G4‐binding tools has been developed, no aptamer has been developed to interact with G4. Moreover, the G4 selectivity of current toolkits is very limited. Herein, we report the first l ‐RNA aptamer that targets a d ‐RNA G‐quadruplex (rG4). Using TERRA rG4 as an example, our results reveal that this l ‐RNA aptamer, Ap3‐7, folds into a unique secondary structure, exhibits high G4 selectivity and effectively interferes with TERRA‐rG4–RHAU53 binding. Our approach and findings open a new door in further developing G4‐specific tools for diverse applications.  相似文献   

18.
The self‐assembly of peptides and proteins under well‐controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self‐assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal‐coordination‐mediated folding and self‐assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self‐assemble into nanofibrils. Furthermore, the copper(II)‐bound nanofibrils template the synthesis of CuS nanowires, which display a near‐infrared laser‐induced thermal effect.  相似文献   

19.
Polyaniline (PANI) is one of the most promising candidates for flexible organic thermoelectric (TE) applications owing to its relatively low cost and high stability. Herein, the self‐assembled supramolecule (SAS) (3,6‐dioctyldecyloxy‐1,4‐benzenedicarboxylic acid) was used as an additive and was introduced into PANI films as a template. Raman spectroscopy, X‐ray diffraction, and conductive atomic force microscopy analyses demonstrated that the highly ordered chain structure of PANI was achieved by chemical interactions between PANI and the SAS. Moreover, the ordered regions in the PANI‐SAS film increased with a decrease in the film thickness. Consequently, the TE properties of PANI‐SAS films were not only much higher than those of PANI films, but they also increased with a decrease in film thickness. The maximum TE power factor of the PANI‐SAS film reached 31 μW m?1 K?2, which is approximately six times higher than the power factor of a PANI film with a similar thickness. This work offers a promising way to prepare PANI thin films with enhanced TE properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号