首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
The target artificial light‐harvesting antenna, comprising 21 discrete chromophores arranged in a logical order, undergoes photochemical bleaching when dispersed in a thin plastic film. The lowest‐energy component, which has an absorption maximum at 660 nm, bleaches through first‐order kinetics at a relatively fast rate. The other components bleach more slowly, in part, because their excited‐state lifetimes are rendered relatively short by virtue of fast intramolecular electronic energy transfer to the terminal acceptor. Two of the dyes, these being close to the terminal acceptor but interconnected through a reversible energy‐transfer step, bleach by way of an autocatalytic step. Loss of the terminal acceptor, thereby switching off the energy‐transfer route, escalates the rate of bleaching of these ancillary dyes. The opposite terminal, formed by a series of eight pyrene‐based chromophores, does not bleach to any significant degree. Confirmation of the various bleaching steps is obtained by examination of an antenna lacking the terminal acceptor, where the autocatalytic route does not exist and bleaching is very slow.  相似文献   

3.
4.
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process.  相似文献   

5.
A non‐covalent double‐decker binding strategy is employed to construct functional supramolecular single‐wall carbon nanotubes (SWCNT)–tetrapyrrole hybrids capable of undergoing photoinduced electron transfer and performing direct conversion of light into electricity. To accomplish this, two semiconducting SWCNTs of different diameters (6,5 and 7,6) were modified via π–π stacking of pyrene functionalized with an alkyl ammonium cation (PyrNH3+). Such modified nanotubes were subsequently assembled via dipole–cation binding of zinc porphyrin with one ( 1 ) or four benzo‐18‐crown‐6 cavities ( 2 ) or phthalocyanine with four benzo‐18‐crown‐6 cavities at the ring periphery ( 3 ), employed as visible‐light photosensitizers. Upon charactering the conjugates using TEM and optical techniques, electron transfer via photoexcited zinc porphyrin and phthalocyanine was investigated using time‐resolved emission and transient absorption techniques. Higher charge‐separation efficiency is established for SWCNT(7,6) with a narrow band gap than the thin SWCNT(6,5) with a wide band gap. Photoelectrochemical studies using FTO/SnO2 electrodes modified with these donor–acceptor conjugates unanimously demonstrated the ability of these conjugates to convert light energy into electricity. The photocurrent generation followed the trend observed for charge separation, that is, incident‐photon‐to‐current efficiency (IPCE) of a maximum of 12 % is achieved for photocells with FTO/SnO2/SWCNT(7,6)/PyrNH3+: 1 .  相似文献   

6.
Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red‐shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20–1000 fold factor) are found. These compounds are highly efficient light‐harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures.  相似文献   

7.
A coupled light‐harvesting antenna–charge‐separation system, consisting of self‐assembled zinc chlorophyll derivatives that incorporate an electron‐accepting unit, is reported. The cyclic tetramers that incorporated an electron acceptor were constructed by the co‐assembly of a pyridine‐appended zinc chlorophyll derivative, ZnPy , and a zinc chlorophyll derivative further decorated with a fullerene unit, ZnPyC60 . Comprehensive steady‐state and time‐resolved spectroscopic studies were conducted for the individual tetramers of ZnPy and ZnPyC60 as well as their co‐tetramers. Intra‐assembly singlet energy transfer was confirmed by singlet–singlet annihilation in the ZnPy tetramer. Electron transfer from the singlet chlorin unit to the fullerene unit was clearly demonstrated by the transient absorption of the fullerene radical anion in the ZnPyC60 tetramer. Finally, with the co‐tetramer, a coupled light‐harvesting and charge‐separation system with practically 100 % quantum efficiency was demonstrated.  相似文献   

8.
Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes.  相似文献   

9.
The energy transport process in natural‐light‐harvesting systems is investigated by solving the time‐dependent Schrödinger equation for a source–network–drain model incorporating the effects of dephasing and dissipation, owing to coupling with the environment. In this model, the network consists of electronically coupled chromophores, which can host energy excitations (excitons) and are connected to source channels, from which the excitons are generated, thereby simulating exciton creation from sunlight. After passing through the network, excitons are captured by the reaction centers and converted into chemical energy. In addition, excitons can reradiate in green plants as photoluminescent light or be destroyed by nonphotochemical quenching (NPQ). These annihilation processes are described in the model by outgoing channels, which allow the excitons to spread to infinity. Besides the photoluminescent reflection, the NPQ processes are the main outgoing channels accompanied by energy dissipation and dephasing. From the simulation of wave‐packet dynamics in a one‐dimensional chain, it is found that, without dephasing, the motion remains superdiffusive or ballistic, despite the strong energy dissipation. At an increased dephasing rate, the wave‐packet motion is found to switch from superdiffusive to diffusive in nature. When a steady energy flow is injected into a site of a linear chain, exciton dissipation along the chain, owing to photoluminescence and NPQ processes, is examined by using a model with coherent and incoherent outgoing channels. It is found that channel coherence leads to suppression of dissipation and multiexciton super‐radiance. With this method, the effects of NPQ and dephasing on energy transfer in the Fenna–Matthews–Olson complex are investigated. The NPQ process and the photochemical reflection are found to significantly reduce the energy‐transfer efficiency in the complex, whereas the dephasing process slightly enhances the efficiency. The calculated absorption spectrum reproduces the main features of the measured counterpart. As a comparison, the exciton dynamics are also studied in a linear chain of pigments and in a multiple‐ring system of light‐harvesting complexes II (LH2) from purple bacteria by using the Davydov D1 ansatz. It is found that the exciton transport shows superdiffusion characteristics in both the chain and the LH2 rings.  相似文献   

10.
The specific binding ability of DNA–lipid micelles (DLMs) can be increased by the introduction of an aptamer. However, supramolecular micellar structures based on self‐assemblies of amphiphilic DLMs are expected to demonstrate low stability when interacting with cell membranes under certain conditions, which could lead to a reduction in selectivity for targeting cancer cells. We herein report a straightforward cross‐linking strategy that relies on a methacrylamide branch to link aptamer and lipid segments. By an efficient photoinduced polymerization process, covalently linked aptamer–lipid units help stabilize the micelle structure and enhance aptamer probe stability, further improving the targeting ability of the resulting nanoassembly. Besides the development of a facile cross‐linking method, this study clarifies the relationship between aptamer–lipid concentration and the corresponding binding ability.  相似文献   

11.
An organic‐based photocatalysis system for water oxidation, with visible‐light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd‐PMO), a visible‐light harvesting antenna, was supported with [RuII(bpy)32+] complex (bpy=2,2′‐bipyridyl) coupled with iridium oxide (IrOx) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd‐PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru3+ species. The Ru3+ species extracts an electron from IrOx to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light‐harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light‐harvesting PMO.  相似文献   

12.
13.
Fast moving : A new pentad (see figure) composed of silicon phthalocyanine (SiPc), as electron donor, that is connected with two units of naphthalenediimide (NDI) and fullerene C60, as electron acceptors, undergoes fast and efficient charge‐separation processes via the NDI and SiPc singlet excited states.

  相似文献   


14.
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium.  相似文献   

15.
Broadband capturing and FRET‐based light‐harvesting molecular triads, CRBs, based on the coumarin–rhodamine–BODIPY platform were rationally designed and synthesized. The absorption band of CRBs starts from blue–green to yellow–orange regions (330–610 nm), covering the strong radiation scope of sunlight. The peripheral coumarin and BODIPY chromophore energy could transfer to the central acceptor rhodamine by a one‐step direct way. The energy of the coumarin moiety could also transfer to the BODIPY unit, subsequently transferring to the rhodamine core by two‐step sequential ways. Both the efficiencies of the coumarin moiety and the BODIPY unit to the rhodamine core in CRBs, determined by two different ways, are very high.  相似文献   

16.
17.
RuII–bis‐pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16 000 M ?1 cm?1). Thus, RuII–polyimine complexes that show intense visible‐light absorptions are of great interest. However, no effective light‐harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible‐light‐harvesting RuII–coumarin arrays, which absorb at 475 nm (ε up to 63 300 M ?1 cm?1, 4‐fold higher than typical RuII–polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy‐transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady‐state and time‐resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuII–polypyridine–chromophore light‐harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal‐to‐ligand charge‐transfer (M LCT) states. Lower energy levels of 1IL/3IL than the corresponding 1M LCT/3M LCT states frustrate the cascade energy‐transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light‐harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10‐diphenylanthracene as a triplet‐acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %.  相似文献   

18.
19.
A stacked assembly composed of a porphyrin and two phthalocyanines was prepared through fourfold rotaxane formation. Two phthalocyanine molecules, bearing four 24‐crown‐8 units, were assembled onto a porphyrin template incorporating four sidechains with two dialkylammonium ions each through pseudorotaxane formation between crown ether units and ammonium ions. The Staudinger phosphite reaction, as the stoppering reaction, resulted in the formation of the stacked heterotrimer composed of a porphyrin and two phthalocyanines connected through a fourfold rotaxane structure. UV/Vis spectroscopic and electrochemical studies of the heterotrimer indicated that there is a significant electronic interaction between the two phthalocyanine units due to the close stacking. The electrochemical oxidation process of the stacked heterotrimer was studied by cyclic voltammetry and spectroelectrochemistry. Electron paramagnetic resonance (EPR) spectroscopy of a dinuclear CuII complex, in which two CuII phthalocyanines were assembled on a metal‐free porphyrin template, revealed that two CuII phthalocyanines were located within the stacking distance, which resulted in an antiferromagnetic interaction between the two S= spins in the ground state of the Cu2+ ions in the heterotrimer.  相似文献   

20.
A molecular photochromic spiropyran–polyoxometalate–alkyl organic–inorganic hybrid has been synthesized and fully characterized. The reversible switching of the hydrophobic spiropyran fragment to the hydrophilic merocyanine one can be easily achieved under light irradiation at different wavelengths. This switch changes the amphiphilic feature of the hybrid, leading to a light‐controlled self‐assembly behavior in solution. It has been shown that the hybrid can reversibly self‐assemble into vesicles in polar solvents and irreversibly into reverse vesicles in non‐polar solvents. The sizes of the vesicles and the reverse vesicles are both tunable by the polarity of the solvent, with the hydrophobic interactions being the main driving force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号