首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Synthesizing energetic metal–organic frameworks at ambient temperature and pressure has been always a challenge in the research area of energetic materials. In this work, through in situ controllable synthesis, energetic metal–organic framework gem‐dinitromethyl‐substituted dipotassium 4,5‐bis(dinitromethyl)‐1,2,3‐triazole with a “cage‐like” crystal packing was obtained and characterized. Most importantly, for the first time, we found that it could be successfully afforded with a catalytic effect of trifluoroacetic acid. This new compound exhibited its high density (2.04 g cm?3) at ambient temperature, superior detonation velocity (8715 m s?1) to that of lead azide (5877 m s?1) and comparable to that of RDX (8748 m s?1). Its detonation products are mainly N2 (48.1 %), suggesting it is also a green energetic material. The above‐mentioned performance indicates its potential applications in detonator devices as lead‐free primary explosive.  相似文献   

2.
Adequate primary explosives such as lead azide mostly contain toxic ingredients, which have to be replaced. A new candidate that shows high potential, potassium 1,1′‐dinitramino‐5,5′‐bistetrazolate (K2DNABT), was synthesized by a sophisticated synthetic procedure based on dimethylcarbonate and glyoxal. It was intensively characterized for its chemical (X‐ray diffraction, EA, NMR and vibrational spectroscopy) and physico‐chemical properties (sensitivity towards impact, friction, and electrostatic, DSC). The obtained primary explosive combines good thermal stability with the desired mechanical stability. Owing to its high heat of formation (326 kJ mol?1) and density (2.11 g cm?3), impressive values for its detonation velocity (8330 m s?1) and pressure (311 kbar) were computed. Its superior calculated performance output was successfully confirmed and demonstrated by different convenient energetic test methods.  相似文献   

3.
The synthesis of 3,3′‐bis(dinitromethyl)‐5,5′‐azo‐1H‐1,2,4‐triazole ( 5 ) using the readily available starting material 2‐(5‐amino‐1H‐1,2,4‐triazol‐3‐yl)acetic acid ( 1 ) is described. All compounds were characterized by means of NMR, IR, and Raman spectroscopy. The energetic compound 5 was additionally characterized by single‐crystal X‐ray diffraction and DSC measurements. The sensitivities towards impact, friction and electrical discharge were determined. In addition, detonation parameters (e.g. heat of explosion, detonation velocity) of the target compound were computed using the EXPLO5 code based on the calculated (CBS‐4M) heat of formation and X‐ray density.  相似文献   

4.
N,N′‐Bis(difuroxano[3,4‐b:3′,4′‐d]phenyl)oxalic amide was synthesized via acylation, nitration, azidation, and pyrolysis‐denitrogenation from the starting materials of oxalyl chloride and 3,5‐dichloroaniline, under mild reaction conditions, with the yields of 81.0%, 82.0%, 86.0% and 81.7% respectively. The title compound and its precursors were characterized by 1H NMR, IR, MS, and elemental analysis. The title compound has a density of 1.92 g·cm?3 by a suspension method, a standard formation enthalpy of 979 kJ·mol?1 calculated by Gaussian programs, a detonation velocity of 8.17 km·s?1, and a detonation pressure of 31 GPa obtained by Kamlet Equation. The thermal decomposition reactions of the title compound at different heating rates were tested by differential scanning calorimetry (DSC). The kinetics parameters of the pyrolysis of the compound were calculated by Kissinger's method. The values of apparent activation energy (Ea) and pre‐exponential constant (A) were 226.7 kJ·mol?1 and 1023.17 s?1 respectively. It was presupposed that N,N′‐bis(difuroxano[3,4‐b:3′,4′‐d]phenyl)oxalic amide would be a promising high energetic explosive with low sensitivity.  相似文献   

5.
Energetic salts that contain nitrogen‐rich cations and the 2‐(dinitromethyl)‐3‐nitro‐1, 3‐diazacyclopent‐1‐ene anion were synthesized in high yield by direct neutralization reactions. The resulting salts were fully characterized by multinuclear NMR spectroscopy (1H and 13C), vibrational spectroscopy (IR), elemental analysis, density and differential scanning calorimetry (DSC), and elemental analysis. Additionally, the structures of the ammonium ( 1 ) and isopropylideneaminoguanidinium ( 9 ) 2‐(dinitromethyl)‐3‐nitro‐1, 3‐diazacyclopent‐l‐ene salts were confirmed by single‐crystal X‐ray diffraction. Solid‐state 15N NMR spectroscopy was used as an effective technique to further determine the structure of some of the products. The densities of the energetic salts paired with organic cations fell between 1.50 and 1.79 g · cm–3 as measured by a gas pycnometer. Based on the measured densities and calculated heats of formation, detonation pressures and velocities were calculated using Explo 5.05 and found to to be 25.2–35.5 GPa and 7949–9004 m · s–1, respectively, which make them competitive energetic materials.  相似文献   

6.
All 5,5′‐hydrazinebistetrazoles reported in the literature are sensitive to oxidation and react with atmospheric oxygen to yield the corresponding 5,5′‐azobistetrazolates on time. Herewith, we report on the synthesis of the free acid 5,5′‐hydrazinebistetrazole (HBT) which showed to be stable on air for extended periods of time. The compound was fully characterized by analytical and spectroscopic methods and its X‐ray structure was determined by diffraction techniques. Besides, we determined its explosive properties by BAM methods and calculated its heat of formation (+414 kJ mol?1), detonation velocity (8523 m s?1) and detonation pressure (27.7 GPa). HBT proved to be very safe to handle (impact sensitivity: >30 J, friction sensitivity: ~108 N) and was used as a starting material for the synthesis of some already reported 5,5′‐azobistetrazolates: NH4+, NH2NH3+, Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Ba2+.  相似文献   

7.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

8.
1,1‐Diamino‐2,2‐dinitroethylene (FOX‐7), one of the most well‐known energetic materials, has attracted broad attention around the world. To extend the chemistry of FOX‐7, we present here a series of energetic salts based on 3‐dinitromethyl‐[1,2,4]triazine, which is prepared from FOX‐7. All these salts were fully characterized using 1H NMR, 13C NMR, IR, and elemental analysis. In addition, the potassium salt ( 2 ), ammonium salt ( 5 ), and guanidinium salt ( 7 ) were further confirmed by single‐crystal X‐ray diffraction. Extensive hydrogen bonds were observed in these salts. The salts exhibit moderate densities varying from 1.63 to 1.76 g · cm–3. All the compounds possess good thermal stability with decomposition temperatures from 118 to 267 °C. The detonation performance for salts were calculated by using EXPLO 5, their detonation velocities are in the range from 6807 to 8614 m · s–1 and detonation pressures fall between 18.8 to 31.6 GPa. All the salts exhibit very low mechanical sensitivity, which indicates their potential application as insensitive energetic materials.  相似文献   

9.
A novel insensitive energetic cocrystal consisting of 3,3′‐bis(1,2,4‐oxadiazole)‐5,5′‐dione and 4‐amino‐1,2,4‐triazole in a 1:2 molar ratio was prepared and characterized. The structure of this cocrystal was characterized by single‐crystal X‐ray diffraction. The crystal structure of the cocrystal is a monoclinic system with P1 space group. Properties of the cocrystal studied included thermal decomposition and detonation performance. This cocrystal has a crystal density of 1.689 g · cm–3 at 173 K and good detonation performance (D = 6940 m · s–1, P = 20.9 GPa). Moreover, measured impact and friction sensitivities (IS > 40 J, FS > 360 N) show that it can be classified as an insensitive energetic material. Its thermodynamic properties indicate that it has moderate thermal stability with a sharp exothermic peak (244 °C, 5 K · min–1) and a high critical temperature of thermal explosion (523 K). In view of the observations above, it may serve as a promising alternative to known explosives such as TNT.  相似文献   

10.
A new class of N,N′‐ethylene‐bridged bis(nitropyrazoles) was synthesized and fully characterized. The highly efficient formation of the N,N′‐ethylene bridge was accomplished using dibromoethane and ammonium or potassium pyrazolate. Further functional‐group transformations of diaminobis(pyrazole) and dichlorobis(pyrazole) gave rise to diversified derivatives, including dinitramino‐, diazido‐ and hexanitrobis(pyrazole). Single‐crystal X‐ray diffractions were obtained for hexanitro and diazido derivatives to illustrate the structural characteristics. Heats of formation and detonation performance were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. Because of the different functionalized groups, the impact and friction sensitivities of these new compounds range from insensitive to sensitive. Among them, the hexanitro derivative displays the most promising overall energetic properties (density (ρ)=1.84 g cm?3; decomposition temperature (Td)=250 °C; detonation pressure (P)=34.1 GPa; detonation velocity (vD)=8759 m s?1; impact sensitivity (IS)=25 J; friction sensitivity (FS)=160 N), which is competitive with those of 1,3,5‐trinitrotriazacyclohexane (ρ=1.80 g cm?3; Td=205 °C; P=35.0 GPa; vD=8762 m s?1; IS=7 J; FS=120 N).  相似文献   

11.
Within this contribution on bis(oxadiazoles) we report on bis‐hydroxylammonium 5,5′‐dinitro‐methyl‐3,3′‐bis(1,2,4‐oxadiazolate), which (to the best of our knowledge) shows the highest density (2.00 g cm?3 at 92 K, 1.95 g cm?3 at RT) ever reported for an ionic CHNO explosive. Also the corresponding bis(ammonium) salt shows an outstanding density of 1.95 g cm?3 (173 K). The reaction of the 3,3′‐bis(1,2,4‐oxadiazolyl)‐5,5′‐bis(2,2′‐dinitro)‐diacetic acid diethyl ester with different nitrogen‐rich bases, such as ammonia, hydrazine, hydroxylamine, and triaminoguanidine causes decarboxylation followed by the formation of the corresponding salts (cation/anion stoichiometry 2:1). The reactions are performed at ambient temperature in H2O/MeOH mixtures and furnish qualitatively pure products showing characteristics of typical secondary explosives. The obtained compounds were characterized by multinuclear NMR spectroscopy, IR and Raman spectroscopy, as well as mass spectrometry. Single‐crystal X‐ray diffraction studies were performed and the structures of all compounds were determined at low temperatures. The thermal stability was measured by differential scanning calorimetry (DSC). The sensitivities were explored by using the BAM drophammer and friction test. The heats of formation were calculated by the atomization method based on CBS‐4M enthalpies. With these values and the X‐ray densities, several detonation parameters such as the detonation pressure, velocity, energy, and temperature were computed using the EXPLO5 code.  相似文献   

12.
Potassium 4,5‐bis(dinitromethyl)furoxanate was synthesized readily from cyanoacetic acid. It was characterized by IR spectroscopy, elemental analysis, NMR spectroscopy, and differential scanning calorimetry (DSC), and the structure was confirmed by X‐ray single‐crystal diffraction. Its positive oxygen balance, high density (2.130 g cm?3), sensitivity (IS=2 J, FS=5 N), and calculated heat of formation (?421.0 kJ mol?1), combined with its calculated superior detonation performance (D=7759.0 m s?1, P=27.3 GPa), make it a competitive replacement as a green primary explosive.  相似文献   

13.
Two polymorphic hydrogen peroxide solvates of 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20; wurtzitane is an alternative name to iceane) were obtained using hydrated α‐CL‐20 as a guide. These novel H2O2 solvates have high crystallographic densities (1.96 and 2.03 g cm?3, respectively), high predicted detonation velocities/pressures (with one solvate performing better than ?‐CL‐20), and a sensitivity similar to that of ?‐CL‐20. The use of hydrated materials as a guide will be important in the development of other energetic materials with hydrogen peroxide. These solvates represent an area of energetic materials that has yet to be explored.  相似文献   

14.
A new family of high‐nitrogen compounds, that is, polyazido‐ and polyamino‐substituted N,N′‐azo‐1,2,4‐triazoles, were synthesized in a safe and convenient manner and fully characterized. The structures of 3,3′,5,5′‐tetra(azido)‐4,4′‐azo‐1,2,4‐triazole ( 15 ) and 3,3′,5,5′‐tetra(amino)‐4,4′‐azo‐1,2,4‐triazole ( 23 ) were also confirmed by X‐ray diffraction. Differential scanning calorimetry (DSC) was performed to determine their thermal stability. Their heats of formation and density, which were calculated by using Gaussian 03, were used to determine the detonation performances of the related compounds (EXPLO 5.05). The heats of formation of the polyazido compounds were also derived by using an additive method. Compound 15 has the highest heat of formation (6933 kJ kg?1) reported so far for energetic compounds and a detonation performance that is comparable to that of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX), while compound 23 has a decomposition temperature of up to 290 °C.  相似文献   

15.
A family of energetic salts with high thermal stability and low impact sensitivity based on an oxygen‐containing cation, 2,4‐diamino‐1,3,5‐triazine‐6‐one, were synthesized and fully characterized by IR and multinuclear (1H, 13C) NMR spectroscopy, elemental analysis, and differential scanning calorimetry. Insights into their sensitivities towards impact, friction, and electrostatics were gained by submitting the materials to standard tests. The structures of 2,4‐diamino‐1,3,5‐triazine‐6‐one nitrate, 2,4‐diamino‐1,3,5‐triazine‐6‐one sulfate, 2,4‐diamino‐1,3,5‐triazine‐6‐one perchlorate, 2,4‐diamino‐1,3,5‐triazine‐6‐one 5‐nitrotetrazolate were determined by single‐crystal X‐ray diffraction; their densities are 1.691, 1.776, 1.854, and 1.636 g cm?3, respectively. Most of the salts decompose at temperatures over 180 °C; in particular, the salts 2,4‐diamino‐1,3,5‐triazine‐6‐one nitrate and 2,4‐diamino‐1,3,5‐triazine‐6‐one perchlorate, which decompose at 303.3 and 336.4 °C, respectively, are fairly stable. Furthermore, most of the salts exhibit excellent impact sensitivities (>40 J), friction sensitivities (>360 N), and are insensitive to electrostatics. The measured densities of these energetic salts range from 1.64 to 2.01 g cm?3. The detonation pressure values calculated for these salts range from 14.6 to 29.2 GPa, and the detonation velocities range from 6536 to 8275 m s?1; these values make the salts potential candidates for thermally stable and insensitive energetic materials.  相似文献   

16.
A family of 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine‐N‐oxides was designed and investigated by theoretical method. The effects of the N→O bond on the properties of TAAT‐N‐oxides, such as density, heat of formation, and detonation performance, were discussed. By comparison with the bond‐dissociation energy of the weakest bond and the electrostatic potentials, the effects of the N→O bond on the stability and impact sensitivity of organic azides were also discussed. The results show that the introduction of N→O bonds at the appropriate positions increases the oxygen balance and density of the compounds, while it has little effect on the stability and impact sensitivity. Consequently, their introduction results in energetic compounds with improved detonation performances.  相似文献   

17.
In this contribution the synthesis and full structural as well as spectroscopic characterization of three 5‐(1,2,4‐triazol‐3‐yl)tetrazoles along with selected energetic moieties like nitro, nitrimino, and azido groups are presented. The main goal is a comparative study on the influence of those variable energetic moieties on structural and energetic properties. A complete characterization including IR and Raman as well as multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and reveal insights into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory and reveal high positive heats of formation for all compounds. The calculated detonation parameters (using the EXPLO5.05 program) are in the range of 8000 m s?1 (8097 m s?1 ( 5 ), 8020 m s?1 ( 6 ), 7874 m s?1 ( 7 )). As expected, the measured impact and friction sensitivities as well as decomposition temperatures strongly depend on the energetic moiety at the triazole ring. The C? C connection of a triazole ring with its opportunity to introduce a large variety of energetic moieties and a tetrazole ring, implying a large energy content, leads to the selective synthesis of primary and secondary explosives.  相似文献   

18.
The minihairpin 5′‐d(GCGAAGC)‐3′ ( 1 ) was modified either in the loop region, in the base‐paired stem, or at the 5′‐terminus by incorporation of base‐modified nucleosides. The thermal melting was correlated to the structural changes induced by the various donor‐acceptor properties of the nucleosides. Overhanging nonpaired nucleosides at the 5′‐terminus stabilized the hairpin, while a reverse of the dG3?dA5 sheared base pair to dA3?dG5 severely affected the stability. The combination of the minihairpin 5′‐d(GCGAAGC)‐3′ ( 1 ) and the thrombin‐binding aptamer 5′‐d(GGTTGGTGTGGTTGG)‐3′ ( 2 (= 46 )) resulted in the new construct 5′‐d(GGTTGGGCGAAGC GGTTGG)‐3′ ( 43 ) arising by replacement of the 5′‐d(TGT)‐3′ loop of 2 by the minihairpin. The fused oligonucleotide 43 exhibits a two‐phase thermal transition indicating the presence of the two unaltered moieties. According to slight changes of the Tm values of the construct 43 as compared to the separate units 1 and 2 , cooperative distorsions are discussed.  相似文献   

19.
A simple and straightforward synthesis of 5,5′‐diamino‐4,4′‐dinitramino‐3,3′‐bi‐1,2,4‐triazole by the selective nitration of 4,4′,5,5′‐tetraamino‐3,3′‐bi‐1,2,4‐triazole is presented. The interaction of the amino and nitramino groups improves the energetic properties of this functionalized bitriazole. For a deeper investigation of these properties, various nitrogen‐rich derivatives were synthesized. The new compounds were investigated and characterized by spectroscopy (1H and 13C NMR, IR, Raman), elemental analysis, mass spectrometry, differential thermal analysis (DTA), X‐ray analysis, and impact and friction sensitivities (IS, FS). X‐ray analyses were performed and deliver insight into structural characteristics with which the stability of the compounds can be explained. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, revealing highly positive heats of formation. The energetic performance of the new molecules was predicted with the EXPLO5 V6.02 computer. A small‐scale shock reactivity test (SSRT) and a toxicity test gave a first impression of the performance and toxicity of selective compounds.  相似文献   

20.
1,1′‐Dinitramino‐5,5′‐bitetrazole and 1,1′‐dinitramino‐5,5′‐azobitetrazole were synthesized for the first time. The neutral compounds are extremely sensitive and powerful explosives. Selected nitrogen‐rich salts were prepared to adjust sensitivity and performance values. The compounds were characterized by low‐temperature X‐ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, elemental analysis, and DTA/DSC. Calculated energetic performances using the EXPLO5 code based on calculated (CBS‐4M) heats of formation and X‐ray densities support the high performances of the 1,1′‐dinitramino‐5,5′‐bitetrazoles as energetic materials. The sensitivities toward impact, friction, and electrostatic discharge were also explored. Most of the compounds show sensitivities in the range of primary explosives and should only be handled with great care!  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号