首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient CpxRhIII‐catalyzed enantioselective alkenyl C?H functionalization/[4+1] annulation of acryl amides and allenes is reported. The described transformation provides straightforward access to enantioenriched α,β‐unsaturated‐γ‐lactams bearing a quaternary stereocenter. The reaction operates under mild conditions, displays a broad functional‐group tolerance, and provides 2H‐pyrrol‐2‐ones with excellent selectivity of up to 97:3 er. Such scaffolds are frequently found in natural products and synthetic bioactive compounds and are of significant synthetic value. It is noteworthy that the allene serves as a one‐carbon unit in the [4+1]‐annulation.  相似文献   

2.
Stoichiometric C?H bond activation of arenes mediated by iron carbonyls was reported by Pauson as early as in 1965, yet the catalytic C?H transformations have not been developed. Herein, an iron‐catalyzed annulation of N?H imines and internal alkynes to furnish cis‐3,4‐dihydroisoquinolines is described, and represents the first iron‐carbonyl‐catalyzed C?H activation reaction of arenes. Remarkablely, this is also the first redox‐neutral [4+2] annulation of imines and alkynes proceeding by C?H activation. The reaction also features only cis stereoselectivity and excellent atom economy as neither base, nor external ligand, nor additive is required. Experimental and theoretical studies reveal an oxidative addition mechanism for C?H bond activation to afford a dinuclear ferracycle and a synergetic diiron‐promoted H‐transfer to the alkyne as the turnover‐determining step.  相似文献   

3.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

4.
Site‐selective ruthenium(II)‐catalyzed direct arylation of amides was achieved through C?H cleavages with modular auxiliaries, derived from easily accessible 1,2,3‐triazoles. The triazolyldimethylmethyl (TAM) bidentate directing group was prepared in a highly modular fashion through copper(I)‐catalyzed 1,3‐dipolar cycloaddition and allowed for ruthenium‐catalyzed C?H arylations on arenes and heteroarenes, as well as alkenes, by using easy‐to‐handle aryl bromides as the arylating reagents. The triazole‐assisted C?H activation strategy was found to be widely applicable, to occur under mild reaction conditions, and the catalytic system was tolerant of important electrophilic functionalities. Notably, the flexible triazole‐based auxiliary proved to be a more potent directing group for the optimized ruthenium(II)‐catalyzed direct arylations, compared with pyridyl‐substituted amides or substrates derived from 8‐aminoquinoline.  相似文献   

5.
The rhodium(III)‐catalyzed [3+2] C? H cyclization of aniline derivatives and internal alkynes represents a useful contribution to straightforward synthesis of indoles. However, there is no report on the more challenging synthesis of pharmaceutically important N‐hydroxyindoles and 3H‐indole‐N‐oxides. Reported herein is the first rhodium(III)‐catalyzed [4+1] C? H oxidative cyclization of nitrones with diazo compounds to access 3H‐indole‐N‐oxides. More significantly, this reaction proceeds at room temperature and has been extended to the synthesis of N‐hydroxyindoles and N‐hydroxyindolines.  相似文献   

6.
A protocol for the three‐component 1,4‐carboamination of dienes is described. Synthetically versatile Weinreb amides were coupled with 1,3‐dienes and readily available dioxazolones as the nitrogen source using [Cp*RhCl2]2‐catalyzed C?H activation to deliver the 1,4‐carboaminated products. This transformation proceeds under mild reaction conditions and affords the products with high levels of regio‐ and E‐selectivity. Mechanistic investigations suggest an intermediate RhIII–allyl species is trapped by an electrophilic amidation reagent in a redox‐neutral fashion.  相似文献   

7.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N? H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C? H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C? H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

8.
Modular 1,2,3‐triazoles enabled iron‐catalyzed C? H arylations with broad scope. The novel triazole‐based bidentate auxiliary is easily accessible in a highly modular fashion and allowed for user‐friendly iron‐catalyzed C(sp2)? H functionalizations of arenes and alkenes with excellent chemo‐ and diastereoselectivities. The versatile iron catalyst also proved applicable for challenging C(sp3)? H functionalizations, and proceeds by an organometallic mode of action. The triazole‐assisted C? H activation strategy occurred under remarkably mild reaction conditions, and the auxiliary was easily removed in a traceless fashion. Intriguingly, the triazole group proved superior to previously used auxiliaries.  相似文献   

9.
Herein, we report an intramolecular rhodium‐catalyzed decarbonylative coupling between cyclobutanones and alkenes that proceeds by C?C activation and provides a distinct approach to a diverse range of saturated bridged cyclopentane derivatives. In this reaction, cyclobutanones serve as cyclopropane surrogates, reacting in a formal (4+2?1) transformation. To demonstrate the efficacy of this method, it was applied in a concise synthesis of the antifungal drug Tolciclate.  相似文献   

10.
A straightforward method for the synthesis of highly functionalized vinylarenes through palladium‐catalyzed, norbornene‐mediated C?H activation/carbene migratory insertion is described. Extension to a one‐pot procedure is also developed. Furthermore, this method can also be used to generate polysubstituted bicyclic molecules. The reaction proceeds under mild conditions to give the products in satisfactory yields using readily available starting materials. This is a Catellani–Lautens reaction that incorporates different types of coupling partners. Additionally, this reaction is the first to demonstrate the possibility of combining Pd‐catalyzed insertion of diazo compounds and Pd‐catalyzed C?H activation.  相似文献   

11.
A novel palladium‐catalyzed [4+1] spiroannulation was developed by using a C(sp3)?H activation/naphthol dearomatization approach. This bimolecular domino reaction of two aryl halides was realized through a sequence of cyclometallation‐facilitated C(sp3)?H activation, biaryl cross‐coupling, and naphthol dearomatization, thus rendering the rapid assembly of a new class of spirocyclic molecules in good yields with broad functional‐group tolerance. Preliminary mechanistic studies indicate that C?H cleavage is likely involved in the rate‐determining step, and a five‐membered palladacycle was identified as the key intermediate for the intermolecular coupling.  相似文献   

12.
An effective and pragmatic strategy for the synthesis of structurally diverse indolo[2,3‐c]isoquinolin‐5‐ones has been developed via a Rh(III)‐catalyzed C?H activation and [4+2] annulation reaction of N‐methoxybenzamides and 3‐diazoindolin‐2‐imines. The reaction involves the efficient formation of two new (one C?C and one C?N) bonds under operationally simple conditions and has the benefits of a broad substrate scope.  相似文献   

13.
A photo‐induced carboxylation reaction of allylic C?H bonds of simple alkenes with CO2 is prompted by means of a ketone and a copper complex. The unique carboxylation reaction proceeds through a sequence of an endergonic photoreaction of ketones with alkenes forming homoallyl alcohol intermediates and a thermal copper‐catalyzed allyl transfer reaction from the homoallyl alcohols to CO2 through C?C bond cleavage.  相似文献   

14.
Although there has been significant progress in the development of transition‐metal‐catalyzed hydrosilylations of alkenes over the past several decades, metal‐free hydrosilylation is still rare and highly desirable. Herein, we report a convenient visible‐light‐driven metal‐free hydrosilylation of both electron‐deficient and electron‐rich alkenes that proceeds through selective hydrogen atom transfer for Si−H activation. The synergistic combination of the organophotoredox catalyst 4CzIPN with quinuclidin‐3‐yl acetate enabled the hydrosilylation of electron‐deficient alkenes by selective Si−H activation while the hydrosilylation of electron‐rich alkenes was achieved by merging photoredox and polarity‐reversal catalysis.  相似文献   

15.
A metal‐free and direct alkene C?H cyanation is described. Directing groups are not required and the mechanism involves electrophilic activation of the alkene by a cyano iodine(III) species generated in situ from a [bis(trifluoroacetoxy)iodo]arene and trimethylsilyl cyanide as the cyanide source. This C?H functionalization can be conducted on gram scale, and for noncyclic 1,1‐ and 1,2‐disubstuted alkenes high stereoselectivity is achieved, thus rendering the method highly valuable.  相似文献   

16.
Rh‐catalyzed carbonylative C?C bond activation of cyclopropylamides generates configurationally stable rhodacyclopentanones that engage tethered alkenes in (3+1+2) cycloadditions. These studies provide the first examples of multicomponent cycloadditions that proceed through C?C bond activation of “simple” electron poor cyclopropanes.  相似文献   

17.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

18.
Bioorthogonal C?H allylation with ample scope was accomplished through a versatile manganese(I)‐catalyzed C?H activation for the late‐stage diversification of structurally complex peptides. The unique robustness of the manganese(I) catalysis manifold was reflected by full tolerance of sensitive functional groups, such as iodides, esters, amides, and OH‐free hydroxy groups, thereby setting the stage for the racemization‐free synthesis of C?H fused peptide hybrids featuring steroids, drug molecules, natural products, nucleobases, and saccharides.  相似文献   

19.
Reported herein is the atroposelective synthesis of biaryl NH isoquinolones by RhIII‐catalyzed C?H activation of benzamides and intermolecular [4+2] annulation for a broad scope of 2‐substituted 1‐alkynylnaphthalenes, as well as sterically hindered, symmetric diarylacetylenes. The axial chirality is constructed based on dynamic kinetic transformation of the alkyne in redox‐neutral annulation with benzamides, with alkyne insertion being stereodetermining. The reaction accommodates both benzamides and heteroaryl carboxamides and proceeds in excellent regioselectivity (if applicable) and enantioselectivities (average 91.8 % ee). An enantiomerically and diastereomerically pure rhodacyclic complex was prepared and offers insight into enantiomeric control of the coupling system, wherein the steric interactions between the amide directing group and the alkyne substrate dictate both the regio‐ and enantioselectivity.  相似文献   

20.
An efficient method for the phosphine‐catalyzed [3+2] cycloaddition reaction of azomethine imines with diphenylsulfonyl alkenes to give dinitrogen‐fused bi‐ or tricyclic heterocyclic compounds in high yields has been described. Moreover, two phenylsulfonyl groups installed on the heterocyclic products could be conveniently removed or transformed to other functional groups, making the reaction more useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号