首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A double B←N bridged bipyridyl (BNBP) is a novel electron‐deficient building block for polymer electron acceptors in all‐polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low‐lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P‐BNBP‐T) exhibits high electron mobility, low‐lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all‐polymer solar cell (all‐PSC) devices with P‐BNBP‐T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38 %, which is among the highest values of all‐PSCs with PTB7 as the electron donor.  相似文献   

2.
Polymer electron acceptors are the key materials in all-polymer solar cells(all-PSCs).In this review,we focused on introducing the principle of boron-nitrogen coordination bond(B←N),and summarizing our recent research on polymer electron acceptors containing B←N unit for efficient all-PSC devices.Two approaches have been reported to design polymer electron acceptors using B←N unit.One is to replace a C-C unit by a B←N unit in conjugated polymers to transform a polymer electron donor to a polymer electron acceptor.The other approach is to construct novel electron-deficient building block based on B←N unit for polymer electron acceptors.The polymer electron acceptors containing B←N unit showed tunable lowest unoccupied molecular orbital(LUMO) energy levels and exhibited excellent all-PSC device performance with power conversion efficiency of exceeding6%.These results indicate that organic boron chemistry is a new toolbox to develop functional polymer materials for optoelectronic device applications.  相似文献   

3.
All‐polymer solar cells (all‐PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high‐performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high‐performance polymer acceptor PZ1 by embedding an acceptor–donor–acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×105 cm−1). The all‐PSCs with the wide‐band‐gap polymer PBDB‐T as donor and PZ1 as acceptor showed a record‐high PCE of 9.19 % for the all‐PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all‐PSCs.  相似文献   

4.
《中国化学》2018,36(5):406-410
All polymer solar cells (all‐PSCs), possessing superior mechanical strength and flexibility, offer the commercialization opportunity of the PSCs for flexible and portable devices. In this work, we designed and synthesized two copolymer acceptors based on dicyanodistyrylbenzene (DCB) and naphthalene diimide (NDI) units. The corresponding copolymer acceptors are denoted as PDCB‐NDI812 and PDCB‐NDI1014. The medium band gap copolymer PBDB‐T was selected as donor material for investigation of the photovoltaic performance. Two all‐PSCs devices showed power conversion efficiencies (PCE) of 4.26% and 3.43% for PDCB‐NDI812 and PDCB‐NDI1014, respectively. The improved PCE was ascribed to the higher short‐circuit current (JSC), greater charge carrier mobility and higher exciton dissociation probability of the PBDB‐T:PDCB‐NDI812 blend film. These results suggest that DCB unit and NDI unit based copolymer acceptors are promising candidates for high performance all‐PSCs.  相似文献   

5.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

6.
综述了以p-型共轭聚合物为给体、n-型有机半导体为受体的非富勒烯聚合物太阳电池光伏材料最新研究进展,包括n-型共轭聚合物和可溶液加工小分子n-型有机半导体(n-OS)受体光伏材料,以及与之匹配的p-型共轭聚合物给体光伏材料.介绍的n-型共轭聚合物受体光伏材料包括基于苝酰亚胺(BDI)、萘酰亚胺(NDI)以及新型硼氮键连受体单元的D-A共聚物受体光伏材料,目前基于聚合物给体(J51)和聚合物受体(N2200)的全聚合物太阳电池的能量转换效率最高达到8.26%.n-OS小分子受体光伏材料包括基于BDI和NDI单元的有机分子、基于稠环中心给体单元的A-D-A型窄带隙有机小分子受体材料等.给体光伏材料包括基于齐聚噻吩和苯并二噻吩(BDT)给体单元的D-A共聚物,重点介绍与窄带隙A-D-A结构小分子受体吸收互补的、基于噻吩取代BDT单元的中间带隙二维共轭聚合物给体光伏材料.使用中间带隙的p-型共轭聚合物为给体、窄带隙A-D-A结构有机小分子为受体的非富勒烯聚合物太阳电池能量转换效率已经突破12%,展示了光明的前景.最后对非富勒烯聚合物太阳电池将来的发展进行了展望.  相似文献   

7.
《中国化学》2018,36(4):280-286
We successfully designed and synthesized two BDT‐BT‐T (BDT=benzo[1,2‐b:4,5‐b']dithiophene, BT‐T=4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole) based polymers as the electron donor for application in all‐polymer solar cells (all‐PSCs). By adopting N2200 as the electron acceptor, we systematically investigated the impact of fluorination on the charge transfer, transport, blend morphology and photovoltaic properties of the relevant all‐PSCs. A best power conversion efficiency (PCE) of 3.4% was obtained for fluorinated PT‐BT2F/N2200 (BT2F=difluorobenzo[c][1,2,5]thiadiazole) all‐PSCs in comparison with that of 2.7% in non‐fluorinated PT‐BT/N2200 (BT=benzothiadiazole) based device. Herein, all‐polymers blends adopting either non‐fluorinated PT‐BT or fluorinated PT‐BT2F exhibit similar morphology features. In depth optical spectrum measurements demonstrate that molecular fluorination can further enhance charge transfer between donor and acceptor polymer. Moreover, all‐polymer blends exhibit improved hole mobilities and more balanced carriers transport when adopting fluorinated donor polymer PT‐BT2F. Therefore, although the PCE is relatively low, our findings may become important in understanding how subtle changes in molecular structure impact relevant optoelectronic properties and further improve the performance of all‐PSCSs.  相似文献   

8.
For over two decades bulk‐heterojunction polymer solar cell (BHJ‐PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non‐fullerene PSCs developing very rapidly. The power conversion efficiencies of non‐fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene‐based PSCs. Among the various non‐fullerene PSCs, all‐polymer solar cells (APSCs) based on polymer donor‐polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long‐term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.  相似文献   

9.
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.  相似文献   

10.
Most of efficient polymer electron acceptors for polymer solar cells (PSCs) are based on naphthalene diimide or perylene diimide as the electron deficient building block. In this paper, for the first time, we report polymer electron acceptors based on fluorinated isoindigo (F‐IID) as the electron deficient building block. We synthesized two polymer electron acceptors consisting of alternating F‐IID unit and thiophene/selenophen unit. They show low‐lying LUMO/HOMO energy levels of –3.69/–5.69 eV, high electron mobilities of 1.31×10–5 cm2·V–1·s–1 and broad absorption spectra with the optical bandgap of 1.61 eV. PSC devices using the two F‐IID‐based polymers as polymer electron acceptors show encouraging power conversion efficiencies (PCEs) of up to 1.50% with an open‐circuit voltage (VOC) of 0.97 V, a short‐circuit current density (JSC) of 2.91 mA·cm–2, and a fill factor (FF) of 53.2%. This work suggests a new kind of polymer electron acceptors based on F‐IID unit.  相似文献   

11.
Considering the potential applications of all‐polymer solar cells (all‐PSCs) as wearable power generators, there is an urgent need to develop photoactive layers that possess intrinsic mechanical endurance, while maintaining a high power‐conversion efficiency (PCE).Herein a strategy is demonstrated to simultaneously control the intercalation behavior and nanocrystallite size in the polymer–polymer blend by using a newly developed, high‐viscosity polymeric additive, poly(dimethylsiloxane‐co‐methyl phenethylsiloxane) (PDPS), into the TQ‐F:N2200 all‐PSC matrix. A mechanically robust 10wt% PDPS blend film with a great toughness was obtained. Our results provide a feasible route for producing high‐performance ductile all‐PSCs, which can potentially be used to realize stretchable all‐PSCs as a linchpin of next‐generation electronics.  相似文献   

12.
We disclose a novel strategy to design n‐type acenes through the introduction of boron–nitrogen coordination bonds (B←N). We synthesized two azaacenes composed of two B←N units and six/eight linearly annelated rings. The B←N unit significantly perturbed the electronic structures of the azaacenes: Unique LUMOs delocalized over the entire acene skeletons and decreased aromaticity of the B←N‐adjacent rings. Most importantly, these B←N‐containing azaacenes exhibited low‐lying LUMO energy levels and high electron affinities, thus leading to n‐type character. The solution‐processed organic field‐effect transistor based on one such azaacene exhibited unipolar n‐type characteristics with an electron mobility of 0.21 cm2 V?1 s?1.  相似文献   

13.
Two new bithiophene imide (BTI)‐based n‐type polymers were synthesized. f‐BTI2‐FT based on a fused BTI dimer showed a smaller band gap, a lower LUMO, and higher crystallinity than s‐BTI2‐FT containing a BTI dimer connected through a single bond. s‐BTI2‐FT exhibited a remarkable electron mobility of 0.82 cm2 V−1 s−1, and f‐BTI2‐FT showed a further improved mobility of 1.13 cm2 V−1 s−1 in transistors. When blended with the polymer donor PTB7‐Th, f‐BTI2‐FT‐based all‐polymer solar cells (all‐PSCs) attained a PCE of 6.85 %, the highest value for an all‐PSC not based on naphthalene (or perylene) diimide polymer acceptors. However, s‐BTI2‐FT all‐PSCs showed nearly no photovoltaic effect. The results demonstrate that f‐BTI2‐FT is one of most promising n‐type polymers and that ring fusion offers an effective approach for designing polymers with improved electrical properties.  相似文献   

14.
Demonstrated in this work is a simple random ternary copolymerization strategy to synthesize a series of polymer acceptors, PTPBT‐ETx, by polymerizing a small‐molecule acceptor unit modified from Y6 with a thiophene connecting unit and a controlled amount of an 3‐ethylesterthiophene (ET) unit. Compared to PTPBT of only Y6‐like units and thiophene units, PTPBT‐ETx (where x represents the molar ratio of the ET unit) with an incorporated ET unit in the ternary copolymers show up‐shifted LUMO energy levels, increased electron mobilities, and improved blend morphologies in the blend film with the polymer donor PBDB‐T. And the all‐polymer solar cell (all‐PSC) based on PBDB‐T:PTPBT‐ET0.3 achieved a high power conversion efficiency over 12.5 %. In addition, the PTPBT‐ET0.3‐based all‐PSC also exhibits long‐term photostability over 300 hours.  相似文献   

15.
All‐polymer solar cells (all‐PSCs), with the photoactive layer exclusively composed of polymers as both donor and acceptor, have attracted growing attention due to their unique merits in optical, thermal and mechanical durability. Through the combined strategies in materials design and device engineering, recently the power conversion efficiencies of single‐junction all‐PSCs have been boosted up to 11 %. This review focuses on the recent progress of all‐PSCs comprising of wide band‐gap p‐type polymers, especially those based on the units of thieno[3,4‐c]pyrrole‐4,6(5H)‐dione], fluorinated benzotriazole, benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione, and pyrrolo[3,4‐f]benzotriazole‐5,7(6H)‐dione. Meantime, several categories of n‐type polymers used to match with these polymer donors are also reviewed. Finally, a brief summary of the strategies of molecular design and morphology optimization is given, and strategies toward further improving performance of all‐PSCs are outlined.  相似文献   

16.
Two n‐type conjugated D‐A copolymers, P(TVT‐NDI) and P(FVF‐NDI) with thienylene‐vinylene‐thienylene (TVT) or furanylene‐vinylene‐furanylene (FVF) as donor (D) units and naphthalene diimide (NDI) as the acceptor (A) units, were synthesized by the Stille coupling copolymerization. The two polymers possess good solubility, high thermal stability, and broad absorption bands with absorption edges at 866 nm for P(TVT‐NDI) and 886 nm for P(FVF‐NDI) . The LUMO energy levels of P(TVT‐NDI) and P(FVF‐NDI) are ?3.80 eV and ?3.76 eV respectively, so the two polymers are suitable for the application as acceptor in blending with most polymer donor in PSCs based on the energy level matching point of view. All polymer solar cells (all‐PSCs) were fabricated with P(TVT‐NDI) or P(FVF‐NDI) as acceptor and medium bandgap polymer J51 as donor for investigating the photovoltaic performance of the two n‐type conjugated polymer acceptors. And higher power conversion efficiency of 6.43% for P(TVT‐NDI) and 5.21% for P(FVF‐NDI) was obtained. The results indicate that arylenevinylenearylene–naphthalene diimide copolymer are promising polymer acceptor for all–PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1757–1764  相似文献   

17.
A n‐type conjugated polymer containing naphthalene diimide (NDI) and 1,3,4‐thiadiazole (TZ) moieties, named PNTZ, has been synthesized and applied for all‐polymer solar cells (all‐PSCs). By the incorporation of TZ unit into the polymer main chains, the lowest unoccupied molecular orbital level of this polymer has been adjusted effectively. In addition, the electron‐acceptor PNTZ shows a broad absorption spectrum in the range of 300–700 nm, and possesses complementary absorption spectrum with the electron‐donor PTB7‐Th. On the basis of PNTZ as the acceptor and PTB7‐Th as the donor, the all‐PSCs are fabricated. After optimization, the well blend morphologies with a continuous D/A interpenetrating network are observed and the best all‐PSC device exhibits a power conversion efficiency of 4.35% with a high short‐circuit current density of 13.26 mA cm?2. This research demonstrates that the TZ‐containing polymer PNTZ is a promising non‐fullerene acceptor for high efficiency all‐PSCs. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 990–996  相似文献   

18.
A novel class of thieno[3,2‐b]thiophene (TT) and isoindigo based copolymers were synthesized and evaluated as electron donor and hole transport materials in bulk‐heterojunction polymer solar cells (BHJ PSCs). These π‐conjugated donor‐acceptor polymers were derived from fused TT and isoindigo structures bridged by thiophene units. The band‐gaps and the highest occupied molecular orbital (HOMO) levels of the polymers were tuned using different conjugating lengths of thiophene units on the main chains, providing band‐gaps from 1.55 to 1.91 eV and HOMO levels from ?5.34 to ?5.71 eV, respectively. The corresponding lowest unoccupied molecular orbital (LUMO) levels were appropriately adjusted with the isoindigo units. Conventional BHJ PSCs (ITO/PEDOT:PSS/active layer/interlayer/Al) with an active layer composed of the polymer and PC71BM were fabricated for evaluation. Power conversion efficiency from a low of 1.25% to a high of 4.69% were achieved with the best performing device provided by the D?π?A polymer with a relatively board absorption spectrum, high absorption coefficient, and more uniform blend morphology. These results demonstrate the potential of this class of thieno[3,2‐b]thiophene‐isoindigo‐based polymers as efficient electron donor and hole transport polymers for BHJ PSCs. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
《中国化学》2018,36(6):495-501
In this work, a new A‐D‐A type nonfullerene small molecular acceptor SiIDT‐IC, with a fused‐ring silaindacenodithiophene (SiIDT) as D unit and 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene)malononitrile (INCN) as the end A unit, was design and synthesized. The SiIDT‐IC film shows absorption peak and edge at 695 and 733 nm, respectively. The HOMO and LUMO of SiIDT‐IC are of −5.47 and −3.78 eV, respectively. Compared with carbon‐bridging, the Si‐bridging can result in an upper‐lying LUMO level of an acceptor, which is benefit to achieve a higher open‐circuit voltage in polymer solar cells (PSCs). Complementary absorption and suitable energy level alignment between SiIDT‐IC and wide bandgap polymer donor PBDB‐T were found. For the PBDB‐T:SiIDT‐IC based inverted PSCs, a D/A ratio of 1: 1 was optimal to achieve a power conversion efficiency (PCE) of 7.27%. With thermal annealing (TA) of the blend film, a higher PCE of 8.16% could be realized due to increasing of both short‐circuit current density and fill factor. After the TA treatment, hole and electron mobilities were elevated to 3.42 × 10−4 and 1.02 × 10−4 cm2·V−1·s−1, respectively. The results suggest that the SiIDT, a Si‐bridged fused ring, is a valuable D unit to construct efficient nonfullerene acceptors for PSCs.  相似文献   

20.
《化学:亚洲杂志》2017,12(12):1286-1290
Three kinds of nonconjugated rigid perylene bisimide (PBI) derivatives based on a triptycene core were designed, synthesized and characterized. The unique three‐dimensional (3D) conformation of triptycene could enable formation of polymer with the favorable morphology for organic polymer solar cells (PSCs) by relieving the self‐aggregation of rigid PBI units. The low‐lying LUMO energy levels of these compounds demonstrated that they are very suitable for use as acceptors in organic solar cells. A higher power conversion efficiency (PCE) of 6.15 % was obtained for the blend film using the compound with two PBI units ( T‐2 ) as the acceptor and commercial poly[[4,8‐bis[5‐(2‐ethylhexyl)thiophene‐2‐yl]benzo[1,2‐b :4,5‐b ′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)‐carbonyl]thieno[3,4‐b ]thiophenediyl]] (PCE‐10) as the electron donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号