首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Layered two‐dimensional (2D) inorganic transition‐metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2. We found that the reaction of liquid‐exfoliated 2D MoS2, with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2–M(OAc)2 materials. Importantly, this method furnished the 2H‐polytype of MoS2 which is a semiconductor. X‐ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT–IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H‐MoS2 allows for its dispersion/processing in more conventional laboratory solvents.  相似文献   

2.
As one member of the emerging class of ultrathin two‐dimensional (2D) transition‐metal dichalcogenide (TMD) nanomaterials, the ultra‐thin MoS2 nanosheet has attracted increasing research interest as a result of its unique structure and fascinating properties. Solution‐phase methods are promising for the scalable production, functionalization, hybridization of MoS2 nanosheets, thus enabling the widespread exploration of MoS2‐based nanomaterials for various promising applications. In this Review, an overview of the recent progress of solution‐processed MoS2 nanosheets is presented, with the emphasis on their synthetic strategies, functionalization, hybridization, properties, and applications. Finally, the challenges and opportunities in this research area will be proposed.  相似文献   

3.
Two‐dimensional layered transition metal dichalcogenides (TMDs) have attracted great interest owing to their unique properties and a wide array of potential applications. However, due to their inert nature, pristine TMDs are very challenging to functionalize. We demonstrate a general route to functionalize exfoliated 2H‐MoS2 with cysteine. Critically, MoS2 was found to be facilitating the oxidation of the thiol cysteine to the disulfide cystine during functionalization. The resulting cystine was physisorbed on MoS2 rather than coordinated as a thiol (cysteine) filling S‐vacancies in the 2H‐MoS2 surface, as originally conceived. These observations were found to be true for other organic thiols and indeed other TMDs. Our findings suggest that functionalization of two‐dimensional MoS2 using organic thiols may not yield covalently or datively tethered functionalities, rather, in this instance, they yield physisorbed disulfides that are easily removed.  相似文献   

4.
《化学:亚洲杂志》2017,12(10):1052-1056
The β‐cyclodextrin‐assisted aqueous‐exfoliation method was used to prepare transition‐metal dichalcogenide (TMD) nanosheets, in a cheap, highly efficient, scalable and environmentally friendly manner. As study cases, MoS2 and ReS2 nanoflakes were prepared according to this method. Particularly, the effective exfoliation of ReS2 crystals in an aqueous environment was observed for the first time. Moreover, exfoliated nanomaterials can be readily utilized in hydrogen evolution reactions (HERs) as noble‐metal‐free catalysts. This work provides new opportunities for highly efficient exfoliation of TMDs and other 2D nanomaterials into few‐layer nanosheets in aqueous media. Their production process showed high biocompatibility, broad applicability and excellent sustainability.  相似文献   

5.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

6.
《Electroanalysis》2017,29(11):2565-2571
MoS2 nanoflakes were prepared by exfoliating commercial MoS2 powders with the assistance of ultrasound and graphene foam was synthesized by chemical vapor deposition using nickel foam as the template. MoS2‐graphene hybrid nanosheets were developed through the combination of MoS2 nanoflakes and graphene nanosheets by ultrasonic dispersion. The hybrid nanosheets were sprayed onto the ITO coated glass, which acts as an electrode for the simultaneously electrochemical determination of levodopa and uric acid. The MoS2‐graphene hybrid nanosheets were characterized by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. The results show that the hybrid nanosheets are composed of MoS2 and graphene with a sheet‐like morphology. The sensitivity of the electrode for levodopa and uric acid is 0.36 μA μM−1 and 0.39 μA μM−1, respectively. The electrode also shows low limit of detection, good selectivity, reproducibility and stability. And it is potential for use in clinical research.  相似文献   

7.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

8.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   

9.
《化学:亚洲杂志》2017,12(22):2889-2893
Bulk molybdenum disulfide (MoS2) itself is virtually insoluble in common organic solvents because of the tight stacks of multiple MoS2 nanosheets. Here we report that V‐shaped polyaromatic compounds with non‐ionic side chains can efficiently exfoliate and disperse the inorganic nanosheets. Simple grinding and sonication (less than total 1 h) of MoS2 powder with the V‐shaped compounds gave rise to large MoS2 nanosheets highly dispersed in NMP through efficient host‐guest S–π interactions. DLS and AFM analyses revealed that the lateral sizes (ca. 150–270 nm) and thicknesses (ca. 2–8 nm) of the products depend on the identity of the non‐ionic side chains on the V‐shaped dispersant.  相似文献   

10.
Mimicking the extracellular matrix to have a similar nanofibrous structure regarding electrical conductivity and mechanical properties would be highly beneficial for cardiac tissue engineering. The molybdenum disulfide, MoS2, and reduced graphene oxide, rGO, nanosheets are two‐dimensional nanomaterials which can be considered as great candidates for enhancing the electrical and mechanical properties of biological scaffolds for cardiac tissue engineering applications. In this study, MoS2 and rGO nanosheets were synthesized and incorporated into silk fibroin nanofibers, SF, via electrospinning method. Then, the human iPSCs transfected with TBX‐18 gene, TBX18‐hiPSCs, were seeded on these scaffolds for in vitro studies. The MoS2 and rGO nanosheets were studied by Raman spectroscopy. After incorporation of the nanosheets into SF nanofibers, the associated characterizations were carried out including scanning electron microscopy, transmission electron microscopy, water contact angle, and mechanical test. Furthermore, SF, SF/MoS2, and SF/rGO scaffolds were used for in vitro studies. Herein, the scaffolds exhibited acceptable biocompatibility and considerable attachment to TBX18‐hiPSCs confirmed by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyl tetrazolium bromide, MTT, assay, and scanning electron microscopy. Also, the real‐time PCR and immunostaining studies confirmed the maturity and upregulation of cardiac functional genes, including GATA‐4, c‐TnT, and α‐MHC in the SF/MoS2 and SF/rGO scaffolds compared with the bare SF one. Therefore, the reinforcement of these SF‐based scaffolds with MoS2 and rGO endues them as a suitable candidate for cardiac tissue engineering.  相似文献   

11.
Studies involving transition‐metal dichalcogenides (TMDs) have been around for many decades and in recent years, many were focused on using TMDs to synthesize inorganic analogues of carbon nanotubes, fullerene, as well as graphene and its derivatives with the ultimate aim of employing these materials into consumer products. In view of this rising trend, we investigated the cytotoxicity of three common exfoliated TMDs (exTMDs), namely MoS2, WS2, and WSe2, and compared their toxicological effects with graphene oxides and halogenated graphenes to find out whether these inorganic analogues of graphenes and derivatives would show improved biocompatibility. Based on the cell viability assessments using methylthiazolyldiphenyl‐tetrazolium bromide (MTT) and water‐soluble tetrazolium salt (WST‐8) assays on human lung carcinoma epithelial cells (A549) following a 24 h exposure to varying concentrations of the three exTMDs, it was concluded that MoS2 and WS2 nanosheets induced very low cytotoxicity to A549 cells, even at high concentrations. On the other hand, WSe2 exhibited dose‐dependent toxicological effects on A549 cells, reducing cell viability to 31.8 % at the maximum concentration of 400 μg mL?1; the higher cytotoxicity displayed by WSe2 might be linked to the identity of the chalcogen. In comparison with graphene oxides and halogenated graphenes, MoS2 and WS2 were much less hazardous, whereas WSe2 showed similar degree of cytotoxicity. Future in‐depth studies should be built upon this first work on the in vitro cytotoxicity of MoS2 and WS2 to ensure that they do not pose acute toxicity. Lastly, nanomaterial‐induced interference control experiments revealed that exTMDs were capable of reacting with MTT assay viability markers in the absence of cells, but not with WST‐8 assay. This suggests that the MTT assay is not suitable for measuring the cytotoxicity of exTMDs because inflated results will be obtained, giving false impressions that the materials are less toxic.  相似文献   

12.
As an electrocatalyst with abundant resources and great potential, molybdenum disulfide is regarded as one of the most likely alternatives to expensive noble‐metals catalysts. However, it is still a challenge to achieve large scale production of few‐layer MoS2 with enhancing activity of electrocatalytic hydrogen reaction at ambient conditions. Herein, we developed a simple environmentally friendly two‐step method, which included intercalation reaction and a subsequent electrochemical reduction reaction for mass preparation of defect‐rich desulfurized MoSx (D?MoSx) nanosheets with plentiful sulfur vacancies. The ratio of sulfur‐molybdenum atoms can be adjusted from 2 : 1 to 1.4 : 1 by regulating the desulfurization voltage. It was found that the HER catalytic activity of the D?MoSx was enhanced compared with that of pristine MoS2 (P?MoS2), the current density of D?MoSx (desulfurization at ?1.0 V) at ?0.3 V versus RHE was about 169% of the P?MoS2, and the Tafel slope decreased to 136 mV dec?1. This method can be widely applied to large‐scale preparation of other two‐dimensional materials.  相似文献   

13.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

14.
《化学:亚洲杂志》2017,12(19):2528-2532
A 3D highly interconnected macroporous network of reduced GO having finely dispersed few‐layered 2D MoS2 nanosheets was constructed through direct use of acidic graphite oxide (GO) for the first time. This facile and technologically scalable process can afford efficient hydrodesulfurization electrocatalysts as potential anode materials at lower cost, and can circumvent the poor thermal stability and recyclability of the material. The strategy provided here can be the basis to design and develop practical processes to address the ultimate goal of large‐scale manufacturing of hybrids composed of 2D materials for various energy and catalysis applications.  相似文献   

15.
Molybdenum disulfide (MoS2) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface‐engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large‐area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)‐, gallium(III)‐, iron(III)‐centered, and metal‐free protoporphyrin IX (ZnPP, GaPP, FePP, H2PP); metal‐free and zinc(II) tetra‐(N‐methyl‐4‐pyridyl)porphyrin (H2T4, ZnT4); and metal‐free and zinc(II) tetraphenylporphyrin (H2TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible‐light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron–hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4‐functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high‐performance light‐harvesting applications.  相似文献   

16.
Two‐dimensional (2D) heterostructured materials, combining the collective advantages of individual building blocks and synergistic properties, have spurred great interest as a new paradigm in materials science. The family of 2D transition‐metal carbides and nitrides, MXenes, has emerged as an attractive platform to construct functional materials with enhanced performance for diverse applications. Here, we synthesized 2D MoS2‐on‐MXene heterostructures through in situ sulfidation of Mo2TiC2Tx MXene. The computational results show that MoS2‐on‐MXene heterostructures have metallic properties. Moreover, the presence of MXene leads to enhanced Li and Li2S adsorption during the intercalation and conversion reactions. These characteristics render the as‐prepared MoS2‐on‐MXene heterostructures stable Li‐ion storage performance. This work paves the way to use MXene to construct 2D heterostructures for energy storage applications.  相似文献   

17.
Molybdenum disulfide (MoS2) is a promising candidate as a high‐performing anode material for sodium‐ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon‐based materials, but it is quite challenging. Herein, we demonstrate a single‐step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5‐amino‐1H‐tetrazole (5‐ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2, polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg?1 at current densities of 100 and 1000 mAg?1, respectively, for SIBs.  相似文献   

18.
As a remarkable class of plasmonic materials, two dimensional (2D) semiconductor compounds have attracted attention owing to their controlled manipulation of plasmon resonances in the visible light spectrum, which outperforms conventional noble metals. However, tuning of plasmonic resonances for 2D semiconductors remains challenging. Herein, we design a novel method to obtain amorphous molybdenum oxide (MoO3) nanosheets, in which it combines the oxidation of MoS2 and subsequent supercritical CO2‐treatment, which is a crucial step for the achievement of amorphous structure of MoO3. Upon illumination, hydrogen‐doped MoO3 exhibits tuned surface plasmon resonances in the visible and near‐IR regions. Moreover, a unique behavior of the amorphous MoO3 nanosheets has been found in an optical biosensing system; there is an optimum plasmon resonance after incubation with different BSA concentrations, suggesting a tunable plasmonic device in the near future.  相似文献   

19.
Two‐dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High‐quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as‐synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge‐transfer resistance at the electrolyte–electrode interface in dye‐sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53 % under a simulated solar illumination of 100 mW cm?2 (AM 1.5), which is comparable with that of Pt‐based devices (7.47 %).  相似文献   

20.
The crystal phase plays an important role in controlling the properties of a nanomaterial; however, it is a great challenge to obtain a nanomaterial with high purity of the metastable phase. For instance, the large‐scale synthesis of the metallic phase MoS2 (1T‐MoS2) is important for enhancing electrocatalytic reaction, but it can only be obtained under harsh conditions. Herein, a spatially confined template method is proposed to synthesize high phase‐purity MoS2 with a 1T content of 83 %. Moreover, both the confined space and the structure of template will affect the purity of 1T‐MoS2; in this case, this approach was extended to other similar spatially confined templates to obtain the high‐purity material. The obtained ultrathin nanosheets exhibit good electrocatalytic activity and excellent stability in the hydrogen evolution reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号