首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙大鹏  李微雪 《催化学报》2013,34(5):973-978
采用密度泛函理论系统研究了超薄氧化物膜/金属体系FeO/Pt和FeO2/Pt及其表面不同区域(FCC,HCP和TOP)的几何结构、电子性质及氧的活性.研究发现,表面O-Fe高度差δz作为一个重要的特征结构参数直接影响局域表面静电势和表面氧的结合能: δz越大,静电势越大,氧的结合能越弱.计算发现,在FeO/Pt体系中,δz顺序为FCC > HCP > TOP,而FeO2/Pt中是FCC > TOP > HCP.此外,在FeO/Pt中,电荷转移方向是从氧化物膜到衬底,Fe的表观价态为+2.36,表面功函较纯Pt(111)的变化可忽略; 而FeO2/Pt中,电荷转移的方向是从衬底到氧化物,Fe的表观价态为+2.95,表面功函较纯Pt增加1.24 eV.进一步分析了电荷转移和表面偶极对电子性质的作用机制.这些研究结果对于认识超薄氧化物薄膜对表面几何结构、电子性质、表面氧活性的调制具有重要的启示意义.  相似文献   

2.
欧阳润海  李微雪 《催化学报》2013,34(10):1820-1825
采用密度泛函理论研究了CO气氛对FeO(111)/Ru(0001)负载Au原子吸附位、电荷及其稳定性的影响. 首先考察了FeO(111)单层薄膜在Ru(0001)表面上的界面结构. 研究发现,表面莫尔超晶胞内的HCP区域有最小的Fe-O层间距(rumpling),且Fe和O原子均与衬底Ru形成化学键. Au原子在FeO/Ru(0001)上最稳定的吸附在HCP区域的Fe-bridge位. 其中,Au原子诱导两个Fe原子从O原子层的下面翻转到其上面,形成两个Au-Fe键,且Au带负电. 当把体系暴露在CO气氛下后,CO能诱导Au原子从原来最稳定的Fe-bridge位转移到其邻近的O-top位,伴随着Au的电荷从负变到正,形成非常稳定的Au+-CO羰基物. 结果表明,反应气氛对负载金属催化剂的化学状态及其稳定性的影响很大; 同时也强调了反应条件下催化剂原位表征的重要性.  相似文献   

3.
Ultrathin (monolayer) films of transition metal oxides grown on metal substrates have recently received considerable attention as promising catalytic materials, in particular for low‐temperature CO oxidation. The reaction rate on such systems often increases when the film only partially covers the support, and the effect is commonly attributed to the formation of active sites at the metal/oxide boundary. By studying the structure and reactivity of FeO(111) films on Pt(111), it is shown that, independent of the film coverage, CO oxidation takes place at the interface between reduced and oxidized phases in the oxide film formed under reaction conditions. The promotional role of a metal support is to ease formation of the reduced phase by reaction between CO adsorbed on metal and oxygen at the oxide island edge.  相似文献   

4.
Wingkei Ho 《催化学报》2015,(12):2109-2118
由于人们80%的时间呆在室内,室内空气的质量直接影响人类健康,因此近年来室内空气质量越来越受到人们的关注.室内污染物包括CO氮氧化物(NOx)和挥发性有机化合物(VOCs),它们给人体健康带来众多负面影响.更为重要的是,考虑到节能,现代建筑的空气密闭性大都较高,但这种减少吸入新鲜空气的设计直接导致室内各种污染物的累积.有些家用电器,如燃气灶和热水器,在使用的时候会涉及到煤、油和天然气的燃烧,特别是通风较差的情况下会成为室内主要的污染源.常规的治理技术,包括吸附和过滤,其成本相对较高,也不适用于低浓度污染物的治理.尤其是更换不及时的过滤器在排风系统中可能会成为VOCs的一个来源.因此,很有必要开发一种新型的技术以降低室内污染物的浓度和保持一个清洁的室内空气环境,从而保障人们的身体健康.光催化是去除室内空气污染物的有效方法.例如, TiO2、钛酸铋和钛酸锶等具有强氧化能力和稳定的光催化活性,因而是高效的光催化剂.一般而言,通常报道的TiO2光催化剂是高度分散的、或悬浮于液体介质中的细小颗粒或粉末.然而,粉末状的TiO2光催化剂不适宜于室内空气净化,因为它变得可吸入而对人体健康造成不利的影响.因此,人们尝试将TiO2颗粒作为薄膜固定在不同的刚性载体上,如玻璃、不锈钢和铝合金板.对基体进行涂覆可显著影响光催化时反应物的表面吸附行为.一般而言,光催化薄膜通常涂覆在平面上,如蜂窝空气过滤器.三维(3D)多孔的陶瓷泡沫对气体通过具有非常好的流体性质,因此本文以它作为涂覆的基体.这种陶瓷泡沫具有3D多孔结构,多种孔密度、比表面积和化学性质.3D多孔陶瓷泡沫空气过滤器的床层空隙率较高,因此使用时压降较低,且不像蜂窝空气过滤器,它具有复杂多变的孔结构,可增强流体的扰动和混合.另外,3D多孔陶瓷泡沫空气过滤器的开发多孔和网状的结构使得在催化体系具有非常好的气体动力学性质,催化剂表面和气体反应物有充分的接触.多孔材料在液相或气相催化反应中具有独特的优势,因此,陶瓷泡沫、多孔的氧化铝、多孔硅胶.分子筛和活性炭经常被用作催化剂载体.在固体基体上TiO2膜的形成可能使得TiO2光催化剂的有效比表面积降低,从而导致其光催化活性下降.然而,由于具有中孔结构的TiO2薄膜的比表面积大,其用于催化反应的活性位也更多,因此使用时仍然具有较高的活性.前期研究表明,涂覆在平面玻璃、不锈钢和氧化铝基体上的中孔TiO2薄膜用于环境净化时表现出增强的光催化效率.另外,室内环境中NO和NO2的浓度一般分别为几百个ppb之内和100 ppb以下.可见, NO是主要的室内空气污染物,对人体健康危害较大.基于此,本文首次采用反胶束法将中孔锐钛矿TiO2薄膜均匀一地涂覆在3D多孔高比表面积的泡沫过滤器上,采用X射线衍射、扫描电镜、X射线光电子能谱、N2吸附-脱附、紫外-可见光光谱和原子力显微镜对所制样品进行了表征,并将样品用于紫外光下催化降解NO,以揭示所制的中孔TiO2涂层具有高的比表面积和高的光催化活性,从而克服使用TiO2粉末所带来的不足.结果表明,由于中孔TiO2薄膜涂层具有较大的有效比表面积,其表面存在很多吸附活性位,用于吸附在反应过程中形成的水蒸汽、气相反应物和产物,因而具有更高的光催化活性,因此在陶瓷泡沫空气净化系统中可以高效地光催化NO降解:在所考察的不同孔密度的陶瓷泡沫过滤器涂覆的TiO2上400 ppb的NO单程转化率均在92.5%以上,高于涂覆在平面陶瓷砖上的TiO2.该陶瓷过滤器的3D多孔特性可增强流体的扰动和混合,使得气相反应物与光催化剂表面有着充分的接触;其大的孔密度也导致高的光催化速率.另外,本文所制样品在所有反应过程中均保持较高且稳定的NO降解速率,这表明其在NO降解反应中没有失活.  相似文献   

5.
H2‐promoted catalytic activity of oxide‐supported metal catalysts in low‐temperature CO oxidation is of great interest but its origin remains unknown. Employing an FeO(111)/Pt(111) inverse model catalyst, we herewith report direct experimental evidence for the spillover of H(a) adatoms on the Pt surface formed by H2 dissociation to the Pt?FeO interface to form hydroxyl groups that facilely oxidize CO(a) on the neighboring Pt surface to produce CO2. Hydroxyl groups and coadsorbed water play a crucial role in the occurrence of hydrogen spillover. These results unambiguously identify the occurrence of hydrogen spillover from the metal surface to the noble metal/metal oxide interface and the resultant enhanced catalytic activity of the metal/oxide interface in low‐temperature CO oxidation, which provides a molecular‐level understanding of both H2‐promoted catalytic activity of metal/oxide ensembles in low‐temperature CO oxidation and hydrogen spillover.  相似文献   

6.
Platinum oxide electrode, as an important part of hydrogen concentration monitoring sensor built in containment, needs to withstand extreme conditions such as high temperature, high humidity, and high irradiation and can still work normally even in the case of serious accidents, which puts forward higher requirements for its performance. In present study, platinum oxide film electrode was successfully prepared with three-dimensional nano-dendritic, uniform, and crack-free on platinum substrate by reactive magnetron sputtering, and the influence of different substrate temperature and sputtering atmosphere on the composition, morphology, and electrocatalytic property of the film was investigated. The results show that platinum oxide film is composed of PtO and PtO2. As the temperature increases from room temperature (RT) to 200°C, the oxygen vacancies in the amorphous film are gradually repaired and convert to the crystalline state, which shows increasing PtO2 ratio, increasing electrochemical active area (ECSA), and improved stability. When the temperature is rising to 400°C, the film shows decreasing oxygen vacancies, increasing average grain size. Because PtO2 decomposes into PtO and Pt, and thus ECSA decreases, the stability and oxygen reduction activity of the films decreases gradually. At the same temperature, the crystalline film obtained in Ar/50%O2 has higher concentration of oxygen vacancies and smaller average grain size than that obtained in O2, resulting in larger ECSA and relatively good stability. By contrast, the platinum oxide film electrode prepared in Ar/50%O2 and 200°C has better stability and excellent electrocatalytic activity for oxygen reduction.  相似文献   

7.
Ordered mesoporous titania thin films were synthesized by evaporation induced self‐assembly process in the presence of Pluronic block copolymers P123 (EO20‐PO70‐EO20). The influence of several experimental parameters, including aging humidity, aging temperature, substrate properties and methods for organic templates removal, on the mesostructure of titania thin films was investigated in details. The mesoporous titania thin film supported Pt catalyst was prepared, and its methanol catalytic combustion performance was studied. The results showed that mesoporous titania thin film is an active support for catalyst. Mesoporous titania thin film supported platinum catalysts yields 70% methanol conversion at room temperature and 100% conversion at 100 °C. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.  相似文献   

9.
We have studied the adsorption of Au, Pd, and Pt atoms on the NiO(100) surface and on NiO/Ag(100) thin films using plane wave DFT+U calculations. The scope of this work is to compare the adsorption properties of NiO, a reducible transition metal oxide, with those of MgO, a simple binary oxide with the same crystal structure and similar lattice parameter. At the same time, we are interested in the adsorption characteristics of NiO ultra-thin films (three atomic layers) deposited on Ag(100) single crystals. Also in this case the scope is to compare NiO/Ag(100) with the corresponding MgO/Ag(100) films which show unusual properties for the case of Au adsorption. The results show that the transition metal atoms bind in a similar way on NiO(100) and NiO/Ag(100) films, with Pt, Pd, and Au forming bonds of decreasing strength in this order. No charging effects occur for Au adsorbed on NiO/Ag(100) films, at variance with MgO/Ag(100). The reasons are analyzed in terms of work function of the metal/oxide interface. Possible ways to modify this property by growing alternate layers of MgO and NiO are discussed.  相似文献   

10.
Equilibrium of Cr atoms between the surface layer and bulk of a binary alloy was analyzed. The Gibbs adsorption equation was used to obtain the dependence of the adsorption activity of atoms in the surface layer on their activity in the bulk. An approximate thermodynamic method was used to calculate the adsorption of Fe (Ni) and Cr atoms in the surface layers of Fe-Cr and Ni-Cr alloys. According to calculations, there was negative adsorption, X Cr ≪ 1, in the surface layer of the alloys caused by a large difference between the Gibbs surface energies of Cr and Fe (or Ni). The negative adsorption of Cr shifted chemical reaction equilibria on the alloy-oxide film boundary both in oxidation in air and in anodic passivation, 3FeO (NiO) + 2Cr = Cr2O3 + 3Fe(Ni), toward oxide film enrichment in the FeO (or NiO) oxide. A unified method for calculating the composition of oxide films on alloys was used for both processes. The method was based on the use of the initial data on the Gibbs surface energy of metals constituting alloys. The calculated oxide film compositions were close to the experimental X-ray photoelectron spectroscopy data.  相似文献   

11.
Thin films of vanadium oxide were grown on vanadium metal surfaces (i) in air at ambient conditions, (ii) in 5 mM H2SO4 (aq), pH 3, (iii) by thermal oxidation at low oxygen pressure (10?5 mbar) at temperatures between 350 and 550 °C and (iv) at near‐atmospheric oxygen pressure (750 mbar) at 500 °C. The oxide films were investigated by atomic force microscopy (AFM), X‐ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). The lithium intercalation properties were studied by cyclic voltammetry (CV). The results show that the oxide films formed in air at room temperature (RT), in acidic aqueous solution, and at low oxygen pressure at elevated temperatures are composed of V2O3. In air and in aqueous solution at RT, the oxide films are ultra‐thin and hydroxylated. At 500 °C, nearly atmospheric oxygen pressure is required to form crystalline V2O5 films. The oxide films grown at pO2 = 750 mbar for 5 min are about 260‐nm thick, and consist of a 115‐nm outer layer of crystalline V2O5. The inner oxide is mainly composed of VO2. For all high temperature oxidations, the oxygen diffusion from the oxide film into the metal matrix was considerable. The oxygen saturation of the metal at 450 °C was found, by XPS, to be 27 at.% at the oxide/metal interface. The well‐crystallized V2O5 film, formed by oxidation for 5 min at 500 °C and 750 mbar O2, was shown to have good lithium intercalation properties and is a promising candidate as electrode material in lithium batteries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Periodic density functional theory calculations revealed strong enhancement of chemical reactivity by defects located at the oxide-metal interface for water dissociation on ultrathin MgO films deposited on Ag(100) substrate. Accumulation of charge density at the oxide-metal interface due to irregular interface defects influences the chemical reactivity of MgO films by changing the charge distribution at the oxide surface. Our results reveal the importance of buried interface defects in controlling chemical reactions on an ultrathin oxide film supported by a metal substrate.  相似文献   

13.
X‐ray photoelectron spectroscopy in the core and valence band region was used to study the formation of hydroxyapatite films on the surface of titanium. The approach used achieves the adhesion of hydroxyapatite by the initial formation of a thin, mainly oxide‐free, etidronate film on the metal. In this approach, it was not possible to prepare hydroxyapatite films of any reasonable thickness on the titanium surface without prior treatment with etidronic acid. Because hydroxyapatite is a principal component of teeth and bones, it is likely that the coated metals will have desirable biocompatible properties. The hydroxyapatite film showed no changes when the film was exposed to air, water, and 1 m sodium chloride solution as representative components of the environment of the film in the human body. These films formed on titanium may find application in medical implants. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of some of the spectral features. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Vanadium oxide surface studies   总被引:4,自引:0,他引:4  
The vanadium oxides can exist in a range of single and mixed valencies with a large variety of structures. The large diversity of physical and chemical properties that they can thus possess make them technologically important and a rich ground for basic research. Here we assess the present status of the microscopic understanding of the physico-chemical properties of vanadium oxide surfaces. The discussion is restricted to atomically well-defined systems as probed by surface techniques. Following a brief review of the properties of the bulk oxides the electronic and geometric structure of their clean single crystal surfaces and adsorption studies, probing their chemical reactivity, are considered. The review then focuses on the growth and the surface properties of vanadium oxide thin films. This is partitioned into films grown on oxide substrates and those on metal substrates. The interest in the former derives from their importance as supported metal oxide catalysts and the need to understand the two-dimensional overlayer of the so-called “monolayer” catalyst. On the single crystal metal substrates thin oxide layers with high structural order and interesting properties can be prepared. Particular attention is given to ultrathin vanadium oxide layers, so-called nano-layers, where novel phases, stabilised by the substrate, form.  相似文献   

15.
含铈Cu-Fe-O催化剂的氧化还原性研究   总被引:5,自引:1,他引:4  
用TPR等方法研究了Cu-Fe-Ce-O/γ-Al2O3(Ⅰ)催化剂的氧化还原性能。结果表明,在(Ⅰ)中铜的存在有利于Fe2O3的还原,铈作为助催化剂能增强Cu-Fe-O/γ-Al2O3(Ⅱ)的氧化还原性能,配合CO、NO和CO+NO气对试样进行预处理后发现,铜吸附CO的能力比铁强,铁吸附NO的能力比铜强,铈的存在可增强(Ⅱ)在NO+CO反应气氛中对CO的吸附能力,并对NO在催化剂表面吸附形成硝酸盐物种产生影响。  相似文献   

16.
The valence band and core‐level X‐ray photoelectron spectroscopy was used to probe hydroxyapatite films formed on the surface of stainless steel. These films formed on steel may find application in medical implants. The key to the successful adhesion of the hydroxyapatite films is shown to be the initial formation of a thin, oxide‐free etidronate film on the metal. It was not found possible to prepare the hydroxyapatite films directly on the metal surfaces. Since hydroxyapatite is a key component of bone and teeth, it is likely that the coated metals will have desirable biocompatible properties. The hydroxyapatite film was exposed to air, water, and 1M sodium chloride solution as representative components of the environment of the film in the human body, and these exposures led to no detectable decomposition of the film. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of the peaks in some core level spectra. The valence band spectra proved especially valuable in the identification of the surface chemistry of the films, and these spectra were interpreted by comparing the experimental spectra with spectra calculated using band structure calculations which showed good agreement with experiment. The calculated spectrum of etidronic acid was found to be significantly different to that of etidronate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Ultrathin oxide film is currently one of the paramount candidates for a heterogeneous catalyst because it provides an additional dimension, i.e., film thickness, to control chemical reactivity. Here, we demonstrate that the chemical reactivity of ultrathin MgO film grown on Ag(100) substrate for the dissociation of individual water molecules can be systematically controlled by interface dopants over the film thickness. Density functional theory calculations revealed that adhesion at the oxide-metal interface can be addressed by the ligand field effect and is linearly correlated with the chemical reactivity of the oxide film. In addition, our results indicate that the concentration of dopant at the interface can be controlled by tuning the drawing effect of oxide film. Our study provides not only profound insight into chemical reactivity control of ultrathin oxide film supported by a metal substrate but also an impetus for investigating ultrathin oxide films for a wider range of applications.  相似文献   

18.
Metal oxide interfaces, metal coatings or dispersed metals on oxide supports play an important part in many technological areas. Nevertheless, there is still a lack of fundamental knowledge about the essential properties of thin metal films and small metal particles on oxide supports, although a deeper understanding could help to improve the electronic, mechanical or catalytic performance of such systems. In the past, a number of different approaches have been proposed and explored aiming at the preparation of suitable model systems. In this review, we discuss the possibility to use thin, well-ordered oxide films as supports for the study of deposited metal particles. This approach offers the advantage to permit the unrestricted application of all experimental methods, which rely on a good electrical or thermal conductivity of the sample, like PES, LEED, STM or TDS. With the help of several examples taken from our own work on a thin alumina film, we show that it is feasible to characterise such systems on a microscopic level with respect to all relevant structural, electronic and adsorption properties. In this way, correlations between these features can be established helping to understand the particular chemistry and physics of small metal aggregates.  相似文献   

19.
Certain stages of the classical procedure for preparing aluminum-platinum catalysts, whose understanding is important from both the basic and practical viewpoints, are considered on the molecular level. Properties of both participants (active component precursor solution and oxide surface) are shown to be inhomogeneous, which can affect interaction of the components at the fixing stage. Existing views (and their evolution) on the mechanism of adsorption of platinum complexes from aqueous solutions on aluminum oxide surface are discussed. The role of chemical processes on the stage of fixing precursor on the electronic and structural properties of the supported metal is demonstrates. Strong metal-support interaction is shown to endow platinum with specific adsorption and catalytic properties in hydrocarbon transformation reactions.  相似文献   

20.

Influence exerted by the nature of an electrode-substrate on the electrochemical deposition of tungsten oxides from a metastable acid solution of isopolytungstate was studied. As substrates for obtaining tungsten oxide deposits served metallic electrodes made of gold and platinum, films of mixed indium-tin oxide on glass (ITO-electrodes) and also glassy carbon electrodes and glassy carbon electrodes coated with films of conducting polymers: polyaniline, polypyrrole, and poly-3,4-ethylenedioxythiophene. It was shown that the nature of a substrate noticeably affects the electrochemical properties of tungsten oxide deposits. These differences are attributed to the adsorption of hydrogen on platinum in the range of the deposition potentials of tungsten oxide and to the chemical interaction of polytungstate ions with the thiophene sulfur of the polymer.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号