首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Since the discovery of the first drum-like CoB16- complex, metal-doped drum-like boron nanotubular structures have been investigated with various metal dopants and different tubular size, forming a new class of novel nanostructures. The CoB16- cluster was found to be composed of a central Co atom coordinated by two fused B8 rings in a tubular structure, representing the potential embryo of metal-filled boron nanotubes and providing opportunities to design one-dimensional metal-boron nanostructures. Here we report improved photoelectron spectroscopy and a more in-depth electronic structure analysis of CoB16-, providing further insight into the chemical bonding and stability of the drum-like doped boron tubular structures. Most interestingly, we find that the central Co atom has an unusually low oxidation state of ?1 and neutral CoB16 can be viewed as a charge transfer complex (Co-@BB16+), suggesting both covalent and electrostatic interactions between the dopant and the boron drum.  相似文献   

2.
LiBC — A Completely Intercalated Heterographite LiBC is a new compound composed only from light main group elements. LiBC is synthesized from the elements in sealed niobium ampoules at 770 K, and short annealing at 1 770 K, forming hexagonal platelets with golden lustre. According to Li+(BC)?, boron and carbon form planar hetero graphite layers of the isoelectronic hexagonal boron nitride type. The inter-layer regions are completely filled by lithium (P63/mmc; a = 275.2 pm; c = 705.8 pm; hP6; ZrBeSi type). The deformation density of the valence electrons prove the π character of the B? C bonds, as well as a polarization according to (BC?). Chemical and physical properties indicate a certain range of homogeneity x(Li) ≤ 1. The thermal decomposition and chemical reactions lead to BC products not yet characterized. The oxidation of LiBC obviously runs by a mechanism similar to that of graphite.  相似文献   

3.
The geometries, magnetic properties and stabilities of the transition metal (TM) atoms encapsulated M2Si18 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) clusters have been systematically calculated by using the density function theory with generalized gradient approximation. Only when the doping metal atom has no more than half‐full d electronic shell, a double hexagonal prism cage‐like M2Si18 structure could form. The total moments of M2Si18 are either 0 or 2μB. Co2Si18 is the most stable cluster among all 3d doped M2Si18 clusters. The model of shell closure at the TM atom may be helpful to understand the stability of M2Si18 clusters. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
The boron rings containing planar octacoordinate transition metals, D 8h FeB8 2−, CoB8 and CoB8 3+, C 2v FeB8, D 2h CoB8 + and CoB8, are optimized with all real vibrational frequencies at the B3LYP/6–311+G* level of the theory. The D 8h FeB8 2− and CoB8 isomers are global minima, while D 8h CoB8 3+ is only local minimum. The electronic structure character of these systems is revealed by natural bond orbital (NBO) analysis, showing that the boron rings containing planar octacoordinate transition metals have stability and aromaticity with six π electrons. The aromaticity is confirmed by nucleus independent chemical shifts (NICS) calculations. Supported by the specialized research fund for the doctoral program of higher education (20060007030)  相似文献   

5.
Heteroatom‐doped polymers or carbon nanospheres have attracted broad research interest. However, rational synthesis of these nanospheres with controllable properties is still a great challenge. Herein, we develop a template‐free approach to construct cross‐linked polyphosphazene nanospheres with tunable hollow structures. As comonomers, hexachlorocyclotriphosphazene provides N and P atoms, tannic acid can coordinate with metal ions, and the replaceable third comonomer can endow the materials with various properties. After carbonization, N/P‐doped mesoporous carbon nanospheres were obtained with small particle size (≈50 nm) and high surface area (411.60 m2 g?1). Structural characterization confirmed uniform dispersion of the single atom transition metal sites (i.e., Co‐N2P2) with N and P dual coordination. Electrochemical measurements and theoretical simulations revealed the oxygen reduction reaction performance. This work provides a solution for fabricating diverse heteroatom‐containing polymer nanospheres and their derived single metal atom doped carbon catalysts.  相似文献   

6.
Mono‐ and bis(diphenylborane)‐fused porphyrins were synthesized from the corresponding β‐(2‐trimethylsilylphenyl)‐substituted porphyrins through the sequence of Si–B exchange reaction, intramolecular bora‐Friedel–Crafts reaction, and ring‐closing Si–B exchange reaction. Effective electronic interactions of the empty p‐orbital of the boron atom with the porphyrin π‐circuit lead to red‐shifted absorption spectra and substantially decreased LUMO energy levels. Pyridine adds at the boron center to cause disruption of the electronic interaction of the boron atom with large association constants (1.9–17×104 m ?1) depending on the central metal at the porphyrin. The ZnII complex behaved as a hetero‐dinuclear Lewis acid, exhibiting regioselective binding of pyridines at the boron or the zinc center.  相似文献   

7.
A detailed first‐principle DFT M06/6‐311++G(d.p) study of dehydrogenation mechanism of trimeric cluster of lithium amidoborane is presented. The first step of the reaction is association of two LiNH2BH3 molecules in the cluster. The dominant feature of the subsequent reaction pathway is activation of H atom of BH3 group by three Li atoms with formation of unique Li3H moiety. This Li3H moiety is destroyed prior to dehydrogenation in favor of formation of a triangular Li2H moiety, which interacts with protic H atom of NH2 group. As a result of this interaction, Li2H2 moiety is produced. It features N?? H+? H? group suited near the middle plane between two Li+ in the transition state that leads to H2 release. The transition states of association and hydrogen release steps are similar in energy. It is concluded that the trimer, (LiNH2BH3)3, is the smallest cluster that captures the essence of the hydrogen release reaction. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium‐doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium‐doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g?1 at a current density of 1.2 A g?1. Furthermore, the porous sodium‐doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid‐state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg?1 and a good cycling stability after 5000 cycles, which confirms that the porous sodium‐doped Ni2P2O7 hexagonal tablets are promising active materials for flexible supercapacitors.  相似文献   

9.
The alkali metal‐nickel carbonyl anions ENi(CO)3? with E=Li, Na, K, Rb, Cs have been produced and characterized by mass‐selected infrared photodissociation spectroscopy in the gas phase. The molecules are the first examples of 18‐electron transition metal complexes with alkali atoms as covalently bonded ligands. The calculated equilibrium structures possess C3v geometry, where the alkali atom is located above a nearly planar Ni(CO)3? fragment. The analysis of the electronic structure reveals a peculiar bonding situation where the alkali atom is covalently bonded not only to Ni but also to the carbon atoms.  相似文献   

10.
Recently the metalloid cluster compound [Ge9Hyp3]? ( 1 ; Hyp=Si(SiMe3)3) was oxidatively coupled by an iron(II) salt to give the largest metalloid Group 14 cluster [Ge18Hyp6]. Such redox chemistry is also possible with different transition metal (TM) salts TM2+ (TM=Fe, Co, Ni) to give the TM+ complexes [Fe(dppe)2][Ge9Hyp3] ( 3 ; dppe=1,2‐bis(diphenylphosphino)ethane), [Co(dppe)2][Ge9Hyp3] ( 4 ), [Ni(dppe)(Ge9Hyp3)] ( 5 ) and [Ni(dppe)2(Ge9Hyp3)]+ ( 6 ). Such a redox reaction does not proceed for Mn, for which a salt metathesis gives the first open shell [Hyp3Ge9‐M‐Ge9Hyp3] cluster ( 2 ; M=Mn). The bonding of the transition metal atom to 1 is also possible for Ni (e.g., compound 6 ), in which one or even two nickel atoms can bind to 1 . In contrast to this in case of the Fe and Co compounds 3 and 4 , respectively, the transition‐metal atom is not bound to the Ge9 core of 1 . The synthesis and the experimentally determined structures of 2 – 6 are presented. Additionally the bonding within 2 – 6 is analyzed and discussed with the aid of EPR measurements and quantum chemical calculations.  相似文献   

11.
Bending the planar trigonal boron center of triphenylborane by connecting its aryl rings with carbon or phosphorus linkers gave access to a series of 9‐boratriptycene derivatives with unprecedented structures and reactivities. NMR spectroscopy and X‐ray diffraction of the Lewis adducts of these non‐planar boron Lewis acids with weak Lewis base revealed particularly strong covalent bond formation. The first Lewis adduct of a trivalent boron compounds with the Tf2N? anion illustrates the unrivaled Lewis acidity of these species. Increasing the pyramidalization of the boron center and using a cationic phosphonium linker resulted in an exceptional enhancement of Lewis acidity. Introduction of a phosphorus and a boron atom at each edge of a triptycene framework, allowed access to new bifunctional Lewis acid‐base 9‐phospha‐10‐boratriptycenes featuring promising reactivity for the activation of carbon‐halogen bonds.  相似文献   

12.
Common wisdom has it that organoboranes are readily oxidized. Described herein is that also their reduction can result in remarkable chemistry. Treatment of dimeric 9H‐9‐borafluorene with Li metal in toluene yields two strikingly different classes of compounds. One part of the sample reacts in a way similar to B2H6, thus affording an aryl(hydro)borane cluster reminiscent of the [B3H8]? anion. The other part furnishes a dianionic boron‐doped graphene flake devoid of hydrogen substituents at the boron centers and featuring a central B?B bond. A change in the solvent to THF allows an isolation of this dibenzo[g,p]chrysene analogue in good yields.  相似文献   

13.
Abstract. The five‐membered heteroelement cluster THF · Cl2In(OtBu)3Sn reacts with the sodium stannate [Na(OtBu)3Sn]2 to produce either the new oxo‐centered alkoxo cluster ClInO[Sn(OtBu)2]3 ( 1 ) (in low yield) or the heteroleptic alkoxo cluster Sn(OtBu)3InCl3Na[Sn(OtBu)2]2 ( 2 ). X‐ray diffraction analyses reveal that in compound 1 the polycyclic entity is made of three tin atoms which together with a central oxygen atom form a trigonal, almost planar triangle, perpendicular to which a further indium atom is connected through the oxygen atom. The metal atoms thus are arranged in a Sn3In pyramid, the edges of which are all saturated by bridging tert‐butoxy groups. The indium atom has a further chloride ligand. Compound 2 has two trigonal bipyramids as building blocks which are fused together at a six coordinate indium atom. One of the bipyramids is of the type SnO3In with tert‐butyl groups on the oxygen atoms, while the other has the composition InCl3Na with chlorine atoms connecting the two metals. The sodium atom in 2 has further contacts to two plus one alkoxide groups which are part of a[Sn(OtBu)2]2 dimer disposing of a Sn2O2 central cycle. The hetero element cluster in 2 thus combines three closed entities and its skeleton SnO3InCl3NaO2Sn2O2 consists of three different metallic and two different non‐metallic elements.  相似文献   

14.
The electrochemical CO2 reduction reaction (CO2RR) to yield synthesis gas (syngas, CO and H2) has been considered as a promising method to realize the net reduction in CO2 emission. However, it is challenging to balance the CO2RR activity and the CO/H2 ratio. To address this issue, nitrogen‐doped carbon supported single‐atom catalysts are designed as electrocatalysts to produce syngas from CO2RR. While Co and Ni single‐atom catalysts are selective in producing H2 and CO, respectively, electrocatalysts containing both Co and Ni show a high syngas evolution (total current >74 mA cm?2) with CO/H2 ratios (0.23–2.26) that are suitable for typical downstream thermochemical reactions. Density functional theory calculations provide insights into the key intermediates on Co and Ni single‐atom configurations for the H2 and CO evolution. The results present a useful case on how non‐precious transition metal species can maintain high CO2RR activity with tunable CO/H2 ratios.  相似文献   

15.
The crystal structure of the cobalt(II) carbonate‐based compound cobalt(II) dicarbonate trisodium chloride, Co(CO3)2Na3Cl, grown from a water–ethanol mixture, exhibits a three‐dimensional network of corner‐sharing {Co43‐CO3)4} tetrahedral building blocks, in which the CoII centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O–CO2)6 environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na+ and Cl ions. Antiferromagnetic coupling between adjacent CoII centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position , one Na atom on position 2 and a carbonate C atom on position 3.  相似文献   

16.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O? [Bi≡B?B≡O]? in which both boron atoms can be viewed as sp‐hybridized and the [B?BO]? fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O? and ReB2O? and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O? has a closed‐shell bent structure (Cs, 1A′) with BO? coordinated to an Ir≡B unit, (?OB)Ir≡B, whereas ReB2O? is linear (C∞v, 3Σ?) with an electron‐precise Re≡B triple bond, [Re≡B?B≡O]?. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

17.
Reducing hexaazatrinaphthylene (HAN) with potassium in the presence of 18‐c‐6 produces [{K(18‐c‐6)}HAN], which contains the S=1/2 radical [HAN].?. The [HAN].? radical can be transferred to the cobalt(II) amide [Co{N(SiMe3)2}2], forming [K(18‐c‐6)][(HAN){Co(N′′)2}3]; magnetic measurements on this compound reveal an S=4 spin system with strong cobalt–ligand antiferromagnetic exchange and J≈?290 cm?1 (?2 J formalism). In contrast, the CoII centres in the unreduced analogue [(HAN){Co(N′′)2}3] are weakly coupled (J≈?4.4 cm?1). The finding that [HAN].? can be synthesized as a stable salt and transferred to cobalt introduces potential new routes to magnetic materials based on strongly coupled, triangular HAN building blocks.  相似文献   

18.
An electron‐counting strategy starting from magnesium boride was used to show the inevitability of hexagonal holes in 2D borophene. The number (hole density, HD) and distribution of the hexagonal holes determine the binding energy per boron atom in monolayer borophenes. The relationship between binding energy and HD changes dramatically when the borophene is placed on a Ag(111) surface. The distribution of holes in borophenes on Ag(111) surfaces depends on the temperature. DFT calculations show that aside from the previously reported S1 and S2 borophene phases, other polymorphs may also be competitive. Plots of the electron density distribution of the boron sheets suggest that the observed STM image of an S2 phase corresponds to a sheet with a HD of 2/15 instead of a sheet with a HD of 1/5. The hole density and the hole distribution echo the distribution of vacancies and extra occupancies in complex β‐rhombohedral boron.  相似文献   

19.
An electrochemical method was developed for the sensitive determination of chlorogenic acid using a boron doped diamond electrode (BDDE) modified with nano‐carbon black (nano‐CB). The active surface areas were found to be 0.059 and 0.146 cm2 for the unmodified BDDE, and nano‐CB/BDDE, respectively. Compared with a BDDE, the nano‐CB/BDDE exhibited a well‐defined redox couple for chlorogenic acid. In addition, the plot of the peak current response changing from a square root to a linear dependence on scan rate is attributed to the transition from planar diffusion to surface behaviour. The anodic and cathodic peak separations (ΔEp) were 97 mV and 14 mV at BDDE and nano‐CB/BDDE, respectively. The decrease in ΔEp at the proposed electrode indicated that the process of chlorogenic acid was greatly accelerated. Square wave voltammetry (SWV) exhibited a dynamic range in which the current versus the concentration of chlorogenic acid were linear from 2.0×10?8 to 2.0×10?6 M with a LOD of 4.1×10?9 M (based on 3Sb/m). The nano‐CB modified BDDE provided improved electrochemical behavior, high electrocatalytic activity, high sensitivity and good reproducibility.  相似文献   

20.
Synthesis of atom‐precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]? cluster (SR: thiolate) using a pure [Ag25(SR)18]? cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25?xAux(SR)18]?, x=1–8. Mass spectrometry and crystallography of [Ag24Au(SR)18]? reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single‐atom level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号