首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of highly efficient oxygen evolution catalysts has been synthesized through the self‐assembly of graphitic carbon nitride nanosheets and carbon nanotubes, driven by π–π stacking and electrostatic interactions. Remarkably, the catalysts exhibit higher catalytic oxygen evolution activity and stronger durability than Ir‐based noble‐metal catalysts and display the best performance among the reported nonmetal catalysts. This good result is attributed to the high nitrogen content and the efficient mass and charge transfer in the porous three‐dimensional nanostructure.  相似文献   

2.
A new highly sensitive and selective electrochemical levofloxacin sensor based on co‐polymer‐carbon nanotube composite electrode was developed. Taurine and Glutathione were electrochemically co‐polymerized on multiwalled carbon nanotubes modified glassy carbon electrode (Poly(TAU‐GSH)/CNT/GCE) and used as a levofloxacin sensor in pH 6 phosphate buffer solution. The new composite electrode surfaces were characterized by scanning electron microscopy, atomic force microscopy and electrochemical impedance spectroscopy. Under the optimized conditions, two linear segments were obtained for increasing LEV concentrations between 20 nmol L?1‐1 μmol L?1 and 1.5 μmol L?1‐55 μmol L?1 LEV with a detection limit of 9 nmol L?1 using amperometry. Poly(TAU‐GSH)/CNT/GCE exhibited high sensitivity, selectivity with good stability. The new sensor was employed for real samples of LEV tablets and urine. Promising results were obtained with good accuracy which were also in accordance with LC‐MS/MS analysis.  相似文献   

3.
A new 2‐oxazoline monomer with a protected thiol group, 2‐[2‐(4‐methoxybenzylsulfanyl)ethyl]‐2‐oxazoline, MOB‐SOx , was synthesized from commercially available compounds. MOB‐SOx and 2‐ethyl‐2‐oxazoline (EtOx) were simultaneously polymerized yielding well defined copolymers with narrow molar mass distributions and target polymer chain length. The copolymerization was initiated by N‐methyl‐2‐methyl‐2‐oxazolinium triflate ( MeOxOTf ). After quantitative deprotection, poly(2‐oxazoline) with pendant thiol groups was obtained. The thiol groups were quantitatively added to the double bond of N‐phenyl‐acrylamide ( PhA ) and benzylmaleimide ( BzM ). Graft copolymers were obtained by reaction of those SH containing polymers with poly(2‐methyl‐2‐oxazoline)s bearing acrylamide ( PMeOx 10 A ) and maleimide ( PMeOx 10 M ) as terminal reactive groups.

  相似文献   


4.
聚2,6-吡啶二甲酸/多壁碳纳米管修饰电极的电催化性能   总被引:1,自引:0,他引:1  
李春香  曾云龙 《分析化学》2006,34(7):999-1002
研制了一种聚2,6-吡啶二甲酸/多壁碳纳米管(PPDA/MCNT)复合修饰电极。该电极以中性KC l溶液为底液,在玻碳电极上以多壁碳纳米管(MCNT)作掺杂剂,通过电聚合2,6-吡啶二甲酸(PDA)而制得。该修饰电极对多巴胺(DA)有很强的电催化氧化作用。在磷酸盐缓冲液(pH 7.2)中,与碳纳米管修饰电极相比,DA的氧化峰电位降低约30 mV。利用线性扫描伏安法(LSV)测定,DA在9.0×10-8~8.0×10-6mol/L浓度范围内,其峰高与浓度呈线性关系;检出限为5.0×10-8mol/L,并可避免AA、UA对测定产生干扰。  相似文献   

5.
A novel experimental technique to follow the crystallization processes of poly(propylene)/MWCNT composites that experience a steady shear deformation using dynamic melt rheometry is described. The effects of heterogeneous nucleation, temperature, and preshear on the crystallization behaviors were determined. A quantitative evaluation of crystallization kinetics difference between quiescent and preshear conditions could be achieved. By combining rheology with POM, we demonstrate that two different crystallization processes account for the shear‐enhanced crystallization at low and high temperatures, respectively.

  相似文献   


6.
7.
The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface.  相似文献   

8.
9.
《化学:亚洲杂志》2017,12(5):543-551
Vertically aligned Ni(OH)2 nanosheets were grown on carbon paper (CP) current collectors through a simple and cost‐effective hydrothermal approach. The as‐grown nanosheets are porous and highly crystallized. If used as a monolithic electrode for electrochemical water oxidation in alkaline solution, the carbon paper supported Ni(OH)2 nanosheets [CP@Ni(OH)2] exhibit high electrocatalytic activity and excellent long‐term stability. The electrode can attain an anodic current density of 20 mA cm−2 at a low overpotential of 338 mV, comparable to that of state‐of‐the‐art RuO2 nanocatalysts supported on CP (CP/RuO2) with the same catalyst loading. Significantly, CP@Ni(OH)2 shows much better long‐term stability than CP/RuO2 upon continuous galvanostatic electrolysis, particularly at a high industry‐relevant current density such as 100 mA cm−2. CP@Ni(OH)2 can sustain water oxidation at 100 mA cm−2 for 50 h without any degradation, whereas the performance of CP/RuO2 is much poorer and deteriorates gradually over time. CP@Ni(OH)2 electrodes hold substantial promise for use as low‐costing water oxidation anodes in electrolyzers.  相似文献   

10.
Glassy carbon electrodes modified with conducting polymers of Ni(II), Zn(II) and metal free tetraruthenated porphyrin were evaluated for reduction and oxidation processes of S(IV) oxoanions in Na2SO3/water‐ethanol at pH 1.0 and 3.5, showing electrocatalytic activity. A Ni(II) film was able to reduce the S(IV) oxoanions selectively in presence of high concentration of gallic acid. The Ni(II) film was also used as an amperometric sensor toward S(IV) oxoanions reduction in white wine samples showing a detection and quantification limit of 1.40 mg L?1 and 4.68 mg L?1, respectively. These results are promising for the electrochemical determination of S(IV) using conducting polymers from these macrocycles.  相似文献   

11.
A glassy carbon electrode (GCE) was modified with nanopeapods formed by ferrocene filled single‐walled carbon nanotubes (Fc@SWNTs). The modified electrode showed bi‐directional electrocatalysis toward dopamine (DA), which suggested a synergistic effect of ferrocene and carbon nanotubes. Bi‐directional detection of DA was realized based on the modified electrode.  相似文献   

12.
MoS2 particles with different size distributions were prepared by simple ultrasonication of bulk MoS2 followed by gradient centrifugation. Relative to the inert microscale MoS2, nanoscale MoS2 showed significantly improved catalytic activity toward the oxygen‐reduction reaction (ORR) and hydrogen‐evolution reaction (HER). The decrease in particle size was accompanied by an increase in catalytic activity. Particles with a size of around 2 nm exhibited the best dual ORR and HER performance with a four‐electron ORR process and an HER onset potential of ?0.16 V versus the standard hydrogen electrode (SHE). This is the first investigation on the size‐dependent effect of the ORR activity of MoS2, and a four‐electron transfer route was found. The exposed abundant Mo edges of the MoS2 nanoparticles were proven to be responsible for the high ORR catalytic activity, whereas the origin of the improved HER activity of the nanoparticles was attributed to the plentiful exposed S edges. This newly discovered process provides a simple protocol to produce inexpensive highly active MoS2 catalysts that could easily be scaled up. Hence, it opens up possibilities for wide applications of MoS2 nanoparticles in the fields of energy conversion and storage.  相似文献   

13.
A poly(2‐aminophenylbenzimidazole)/gold nanoparticles (P2AB/AuNPs) coated disposable pencil graphite electrode (PGE) was fabricated as an enzyme‐free sensor for the H2O2 determination. P2AB/AuNPs and P2AB were successfully synthesized electrochemically on PGE in acetonitrile for the first time. The coatings were characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, Energy‐dispersive X‐ray spectroscopy, Surface‐enhanced Raman spectroscopy, and UV‐Vis spectroscopy. AuNPs interacted with P2AB as carrier enhances the electrocatalytic activity towards reduction of H2O2. The analytical performance was evaluated in a 100 mM phosphate buffer solution at pH 6.5 by amperometry. The steady state current vs. H2O2 concentration is linear in the range of 0.06 to 100 mM (R2=0.992) with a limit of detection 3.67×10?5 M at ?0.8 V vs. SCE and no interference is caused by ascorbic acid, dopamine, uric acid, and glucose. The examination for the sensitive determination of H2O2 was conducted in commercially available hair oxidant solution. The results demonstrate that P2AB/AuNPs/PGE has potential applications as a sensing material for quantitative determination of H2O2.  相似文献   

14.
15.
By taking inspiration from the catalytic properties of single‐site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon‐nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability.  相似文献   

16.
17.
Single‐atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single‐atom electrode greatly limit their performance. Herein, we prepared a nickel single‐atom electrode consisting of isolated, high‐density and low‐valent nickel(I) sites anchored on a self‐standing N‐doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon‐fiber paper. The combination of single‐atom nickel(I) sites and self‐standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d‐band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single‐nickel‐atom electrode exhibits a specific current density of ?32.87 mA cm?2 and turnover frequency of 1962 h?1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

18.
The living cationic ring‐opening polymerization of 2‐oxazolines has been studied in great detail since its discovery in 1966. The versatility of this living polymerization method allows copolymerization of a variety of 2‐oxazoline monomers to give a range of tunable polymer properties that enable, for example, hydrophilic, hydrophobic, fluorophilic, as well as hard and soft materials to be obtained. However, this class of polymers was almost forgotten in the 1980s and 1990s because of their long reaction times and limited application possibilities. In the new millennium, a revival of poly(2‐oxazoline)s has arisen because of their potential use as biomaterials and thermoresponsive materials, as well as the easy access to defined amphiphilic structures for (hierarchical) self‐assembly. Recent developments that illustrate the potential of poly(2‐oxazoline)s are discussed in this Review. In addition, the promising combination of poly(2‐oxazoline)s and click chemistry is illustrated.  相似文献   

19.
Summary: The effect of poly(ε‐caprolactone) (PCL) molecular weight on the orientation of crystalline PCL in miscible poly(ε‐caprolactone)/poly(vinyl chloride) (PCL/PVC) blends, melt crystallized under strain, has been studied by a combination of wide angle X‐ray diffraction (WAXD) and small angle X‐ray scattering (SAXS) studies. An unusual crystal orientation with the b‐axis parallel to the stretching direction was observed in miscible PCL/PVC blends with PCL of high molecular weight (>21 000). SAXS showed the presence of nanosize confined PCL in the PCL/PVC blends, which could be preserved at temperatures higher than the Tm of PCL but lower than the Tg of PVC. A mechanism based on the confinement of PCL crystal growth was proposed, which can explain the formation of b‐axis orientation in PCL/PVC blends crystallized under strain.

SAXS pattern of stretched PCL/PVC blend after annealing at 90 °C for 5 min.  相似文献   


20.
Three different in situ chemical oxidative polymerization routes, that is, (A) spin‐coating and subsequent liquid layer polymerization, (B) spin‐coating followed by vapor phase polymerization, and (C) in situ polymerization and then post‐treatment by immersion in ethylene glycol (EG), have been developed to achieve poly(3,4‐ethylenedioxythiophene)/reduced graphene oxide (PEDOT/rGO) nanocomposites. As demonstrated by scanning electron microscopic and energy‐dispersive X‐ray spectroscopic techniques, PEDOT has been successfully coated on the surface of the rGO nanosheets by each of the three preparation routes. Importantly, all of the nanocomposites display a greatly enhanced thermoelectric performance (power factors) relative to those of the corresponding neat PEDOT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号