首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
We herein describe the tandem molecular self‐assembly of a peptide derivative ( 1 ) that is controlled by a combination of enzymatic and chemical reactions. In phosphate‐buffered saline (PBS), compound 1 self‐assembles first into nanoparticles by phosphatase and then into nanofibers by glutathione. Liver cancer cells exhibit higher concentrations of both phosphatase and GSH than normal cells. Therefore, the tandem self‐assembly of 1 also occurs in the liver cancer cell lines HepG2 and QGY7703; compound 1 first forms nanoparticles around the cells and then forms nanofibers inside the cells. Owing to this self‐assembly mechanism, compound 1 exhibits large ratios for cellular uptake and inhibition of cell viability between liver cancer cells and normal liver cells. We envision that using both extracellular and intracellular reactions to trigger tandem molecular self‐assembly could lead to the development of supramolecular nanomaterials with improved performance in cancer diagnostics and therapy.  相似文献   

2.
In molecular self‐assembly molecules form organized structures or patterns. The control of the self‐assembly process is an important and challenging topic. Inspired by the cytoskeletal‐membrane protein lipid bilayer system that determines the shape of eukaryotic cells, we developed a frame‐guided assembly process as a general strategy to prepare heterovesicles with programmed geometry and dimensions. This method offers greater control over self‐assembly which may benefit the understanding of the formation mechanism as well as the functions of the cell membrane.  相似文献   

3.
The extracellular matrix (ECM) is the natural fibrous scaffold that regulates cell behavior in a hierarchical manner. By mimicking the dynamic and reciprocal interactions between ECM and cells, higher‐order molecular self‐assembly (SA), mediated through the dynamic growth of scaffold‐like nanostructures assembled by different molecular components, was developed. Designed and synthesized were two self‐sorted coumarin‐based gelators, a peptide molecule and a benzoate molecule, which self‐assemble into nanofibers and nanobelts, respectively, with different dynamic profiles. Upon the dynamic growth of the fibrous scaffold assembled from peptide gelators, nanobelts assembled from benzoate gelators transform into a layer‐by‐layer nanosheet, reaching ninefold increase in height. By using light and an enzyme, the spatial–temporal growth of the scaffold can be modified, leading to in situ height regulation of the higher‐order architecture.  相似文献   

4.
Inspired by the diverse protein‐based structures and materials in organisms, proteins have been expected as promising biological components for constructing nanomaterials toward various applications. In numerous studies protein‐based nanomaterials have been constructed with the merits of abundant bioactivity and good biocompatibility. However, self‐assembly of proteins as a dominant approach in constructing anticancer nanodrugs has not been reviewed. Here, we provide a comprehensive account of the role of protein self‐assembly in fabrication, regulation, and application of anticancer nanodrugs. The supramolecular strategies, building blocks, and molecular interactions of protein self‐assembly as well as the properties, functions, and applications of the resulting nanodrugs are discussed. The applications in chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, gene therapy, and combination therapy are included. Especially, manipulation of molecular interactions for realizing cancer‐specific response and cancer theranostics are emphasized. By expounding the impact of molecular interactions on therapeutic activity, rational design of highly efficient protein‐based nanodrugs for precision anticancer therapy can be envisioned. Also, the challenges and perspectives in constructing nanodrugs based on protein self‐assembly are presented to advance clinical translation of protein‐based nanodrugs and next‐generation nanomedicine.  相似文献   

5.
Understanding the structure‐morphology relationships of self‐assembled nanostructures is crucial for developing materials with the desired chemical and biological functions. Here, phosphate‐based naphthalimide (NI) derivatives have been developed for the first time to study the enzyme‐instructed self‐assembly process. Self‐assembly of simple amino acid derivative NI‐Yp resulted in non‐specific amorphous aggregates in the presence of alkaline phosphatase enzyme. On the other hand, NI‐FYp dipeptide forms spherical nanoparticles under aqueous conditions which slowly transformed into partially unzipped nanotubular structures during the enzymatic catalytic process through multiple stages which subsequently resulted in hydrogelation. The self‐assembly is driven by the formation of β‐sheet type structures stabilized by offset aromatic stacking of NI core and hydrogen bonding interactions which is confirmed with PXRD, Congo‐red staining and molecular mechanical calculations. We propose a mechanism for the self‐assembly process based on TEM and spectroscopic data. The nanotubular structures of NI‐FYp precursor exhibited higher cytotoxicity to human breast cancer cells and human cervical cancer cells when compared to the nanofiber structures of the similar Fmoc‐derivative. Overall this study provides a new understanding of the supramolecular self‐assembly of small‐molecular‐weight hydrogelators.  相似文献   

6.
Stem‐cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue‐engineering scaffolds. However, our understanding of the material properties of stem‐cell scaffolds is limited to nanoscopic‐to‐macroscopic length scales. Herein, a solid‐state NMR approach is presented that provides atomic‐scale information on complex stem‐cell substrates at near physiological conditions and at natural isotope abundance. Using self‐assembled peptidic scaffolds designed for nervous‐tissue regeneration, we show at atomic scale how scaffold‐assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid‐state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem‐cell scaffold. This could improve the design of tissue‐engineering scaffolds and other self‐assembled biomaterials.  相似文献   

7.
The self‐assembled (SA) molecular monolayers of a 3‐aminopropyltrimethoxysilane (3‐APTS) on a silicon (111) surface, and the effects of ultraviolet (UV) pre‐treatment for substrates on the assembling process have been studied using XPS and atomic force microscopy (AFM). The results show that the SA 3‐APTS molecules are bonded to the substrate surface in a nearly vertical orientation, with a thickness of the monolayer of about 0.8–1.5 nm. The SA molecular monolayers show a substantial degree of disorder in molecular packing, which are believed to result from the interactions of amine tails in the silane molecules used with surface functionalities of the substrates, and the oxygen‐containing species from the ambient. UV irradiation for silicon substrates prior to the self‐assembly reaction can enhance the assembly process and hence, significantly increase the coverage of the monolayer assembled for the substrates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
To overcome the limitations of molecular assemblies, the development of novel supramolecular building blocks and self‐assembly modes is essential to create more sophisticated, complex, and controllable aggregates. The self‐assembly of peptide–DNA conjugates (PDCs), in which two orthogonal self‐assembly modes, that is, β‐sheet formation and Watson–Crick base pairing, are covalently combined in one supramolecular system, is reported. Despite extensive research, most self‐assembly studies have focused on using only one type of building block, which restricts structural and functional diversity compared to multicomponent systems. Multicomponent systems, however, suffer from poor control of self‐assembly behaviors. Covalently conjugated PDC building blocks are shown to assemble into well‐defined and controllable nanostructures. This controllability likely results from the decrease in entropy associated with the restriction of the molecular degrees of freedom by the covalent constraints. Using this strategy, the possibility to thermodynamically program nano‐assemblies to exert gene regulation activity with low cytotoxicity is demonstrated.  相似文献   

9.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

10.
We report on a pronounced specific‐ion effect on the intermolecular and chiral organization, supramolecular structure formation, and resulting materials properties for a series of low molecular weight peptide‐based hydrogelators, observed in the presence of simple inorganic salts. This effect was demonstrated using aromatic short peptide amphiphiles, based on fluorenylmethoxycarbonyl (Fmoc). Gel‐phase materials were formed due to molecular self‐assembly, driven by a combination of hydrogen bonding and π‐stacking interactions. Pronounced morphological changes were observed by atomic force microscopy (AFM) for Fmoc‐YL peptide, ranging from dense fibrous networks to spherical aggregates, depending on the type of anions present. The gels formed had variable mechanical properties, with G′ values between 0.8 kPa and 2.4 kPa as determined by rheometry. Spectroscopic analysis provided insights into the differential mode of self‐assembly, which was found to be dictated by the hydrophobic interactions of the fluorenyl component, with comparable H‐bonding patterns observed in each case. The efficiency of the anions in promoting the hydrophobic interactions and thereby self‐assembly was found to be consistent with the Hofmeister anion sequence. Similar effects were observed with other hydrophobic peptides, Fmoc‐VL and Fmoc‐LL. The effect was found to be less pronounced for a less hydrophobic peptide, Fmoc‐AA. To get more insights into the molecular mechanism, the effect of anions on sol–gel equilibrium was investigated, which indicates the observed changes result from the specific‐ion effects on gels structure, rather than on the sol–gel equilibrium. Thus, we demonstrate that, by simply changing the ionic environment, structurally diverse materials can be accessed providing an important design consideration in nanofabrication via molecular self‐assembly.  相似文献   

11.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

12.
In this paper, a self‐delivery chimeric peptide PpIX‐PEG8‐KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self‐assembly into nanoparticles (designated as PPMA), this self‐delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti‐tumor immune response. On the other hand, the melanoma specific antigen (KVPRNQDWL) peptide could also activate the specific cytotoxic T cells for anti‐tumor immunity. Compared to immunotherapy alone, the combined photodynamic immunotherapy exhibits significantly enhanced inhibition of melanoma growth. Both in vitro and in vivo investigations confirm that PDT of PPMA has a positive effect on anti‐tumor immune response. This self‐delivery system demonstrates a great potential of this PDT amplified immunotherapy strategy for advanced or metastatic tumor treatment.  相似文献   

13.
Amyloid self‐assembly of islet amyloid polypeptide (IAPP) is linked to pancreatic inflammation, β‐cell degeneration, and the pathogenesis of type 2 diabetes (T2D). The multifunctional host‐defence peptides (HDPs) cathelicidins play crucial roles in inflammation. Here, we show that the antimicrobial and immunomodulatory polypeptide human cathelicidin LL‐37 binds IAPP with nanomolar affinity and effectively suppresses its amyloid self‐assembly and related pancreatic β‐cell damage in vitro. In addition, we identify key LL‐37 segments that mediate its interaction with IAPP. Our results suggest a possible protective role for LL‐37 in T2D pathogenesis and offer a molecular basis for the design of LL‐37‐derived peptides that combine antimicrobial, immunomodulatory, and T2D‐related anti‐amyloid functions as promising candidates for multifunctional drugs.  相似文献   

14.
The combination of oligonucleotides and synthetic supramolecular systems allows for novel and long‐needed modes of regulation of the self‐assembly of both molecular elements. Discotic molecules were conjugated with short oligonucleotides and their assembly into responsive supramolecular wires studied. The self‐assembly of the discotic molecules provides additional stability for DNA‐duplex formation owing to a cooperative effect. The appended oligonucleotides allow for positional control of the discotic elements within the supramolecular wire. The programmed assembly of these hybrid architectures can be modulated through the DNA, for example, by changing the number of base pairs or salt concentration, and through the discotic platform by the addition of discotic elements without oligonucleotide handles. These hybrid supramolecular‐DNA structures allow for advanced levels of control over 1D dynamic platforms with responsive regulatory elements at the interface with biological systems.  相似文献   

15.
We demonstrate that the incorporation of one or two amino acids of phenylalanine (F) or 4‐fluoro phenylalanine (fF) will greatly lower the background fluorescence intensities of conventional quenched probes with quenchers. This enhanced quenching effect was due to the synergetic effect of the aggregation caused quenching and the presence of a quencher. Such strategy will not greatly affect the enzyme recognition properties to the probes. We also demonstrated that our self‐assembled nanoprobe with the enhanced quenching effect showed a better performance in cells for the detection of cell apoptosis than the unassembled probes. Our study demonstrates that using molecular self‐assembly can optimize and improve the performance of molecular probes and it provides a simple but very useful strategy to boost the signal‐to‐noise ratios of fluorescence probes.  相似文献   

16.
An artificial heme enzyme was created through self‐assembly from hemin and the lactococcal multidrug resistance regulator (LmrR). The crystal structure shows the heme bound inside the hydrophobic pore of the protein, where it appears inaccessible for substrates. However, good catalytic activity and moderate enantioselectivity was observed in an abiological cyclopropanation reaction. We propose that the dynamic nature of the structure of the LmrR protein is key to the observed activity. This was supported by molecular dynamics simulations, which showed transient formation of opened conformations that allow the binding of substrates and the formation of pre‐catalytic structures.  相似文献   

17.
Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high‐performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self‐assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self‐assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self‐assembly of nanofilaments.  相似文献   

18.
An important challenge in molecular assembly and hierarchical molecular engineering is to control and program the directional self‐assembly into chiral structures. Here, we present a versatile DNA surface adapter that can programmably self‐assemble into various chiral supramolecular architectures, thereby regulating the chiral directional “bonding” of gold nanorods decorated by the surface adapter. Distinct optical chirality relevant to the ensemble conformation is demonstrated from the assembled novel stair‐like and coil‐like gold nanorod chiral metastructures, which is strongly affected by the spatial arrangement of neighboring nanorod pair. Our strategy provides new avenues for fabrication of tunable optical metamaterials by manipulating the directional self‐assembly of nanoparticles using programmable surface adapters.  相似文献   

19.
In cancer treatment, the unsatisfactory solid‐tumor penetration of nanomaterials limits their therapeutic efficacy. We employed an in vivo self‐assembly strategy and designed polymer–peptide conjugates (PPCs) that underwent an acid‐induced hydrophobicity increase with a narrow pH‐response range (from 7.4 to 6.5). In situ self‐assembly in the tumor microenvironment at appropriate molecular concentrations (around the IC50 values of PPCs) enabled drug delivery deeper into the tumor. A cytotoxic peptide KLAK, decorated with the pH‐sensitive moiety cis‐aconitic anhydride (CAA), and a cell‐penetrating peptide TAT were conjugated onto poly(β‐thioester) backbones to produce PT‐K‐CAA, which can penetrate deeply into solid tumors owing to its small size as a single chain. During penetration in vivo, CAA responds to the weak acid, leading to the self‐assembly of PPCs and the recovery of therapeutic activity. Therefore, a deep‐penetration ability for enhanced cancer therapy is provided by this in vivo assembly strategy.  相似文献   

20.
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self‐assembly. We compare the self‐assembly of two carboxyl‐functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2‐position enables efficient pairwise H‐bonding interactions into a single thermodynamic species, whereas meso‐substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self‐assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号