首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

2.
All‐solid‐state sodium‐ion batteries that operate at room temperature are attractive candidates for use in large‐scale energy storage systems. However, materials innovation in solid electrolytes is imperative to fulfill multiple requirements, including high conductivity, functional synthesis protocols for achieving intimate ionic contact with active materials, and air stability. A new, highly conductive (1.1 mS cm?1 at 25 °C, Ea=0.20 eV) and dry air stable sodium superionic conductor, tetragonal Na3SbS4, is described. Importantly, Na3SbS4 can be prepared by scalable solution processes using methanol or water, and it exhibits high conductivities of 0.1–0.3 mS cm?1. The solution‐processed, highly conductive solidified Na3SbS4 electrolyte coated on an active material (NaCrO2) demonstrates dramatically improved electrochemical performance in all‐solid‐state batteries.  相似文献   

3.
Sulfide‐based superionic conductors with high ionic conductivity have been explored as candidates for solid‐state Li batteries. However, moisture hypersensitivity has made their manufacture complicated and costly and also impeded applications in batteries. Now, a sulfide‐based superionic conductor Li4Cu8Ge3S12 with superior stability was developed based on the hard/soft acid–base theory. The compound is stable in both moist air and aqueous LiOH aqueous solution. The electrochemical stability window was up to 1.5 V. An ionic conductivity of 0.9×10?4 S cm with low activation energy of 0.33 eV was achieved without any optimization. The material features a rigid Cu‐Ge‐S open framework that increases its stability. Meanwhile, the weak bonding between Li+ and the framework promotes ionic conductivity. This work provides a structural configuration in which weak Li bonding in the rigid framework promotes an environment for highly conductive and stable solid‐state electrolytes.  相似文献   

4.
固态电解质是固态电池中的关键材料,开发具有高离子电导率、高化学/电化学稳定性、电极兼容性良好的固态电解质正成为研究热点。硫化物固态电解质相较其它固态电解质具有更高的离子电导率和良好的机械加工性能等优势,是最有前景实现实用化的固态电解质之一。在众多硫化物固态电解质中,Li7P3S11因其高的离子电导率和较低的原料成本而极具研究意义。本文首先介绍了Li7P3S11电解质的结构、Li+传导机理及合成路径;其次,针对该电解质的电导率提高、空气/水稳定性提升、固固界面稳定性及电解质自身稳定性改善等问题,综述了目前常用的改性策略研究;再次,总结了基于Li7P3S11电解质的全固态锂离子电池和全固态锂硫电池的构筑;最后,本文分析了Li7P3S11电解质的研究和应用面临的挑战,并指出该电解质未来发展的趋势。  相似文献   

5.
《印度化学会志》2023,100(4):100959
The polymer-ceramic composite electrolytes have great application potential for next-generation solid state lithium batteries, as they have the merits to eliminate the problem of liquid organic electrolytes and enhancing chemical/electrochemical stability. However, polymer-ceramic composite electrolytes show poor ionic conductivity, which greatly hinders their practical applications. In this work, the addition of plasticizer ethylene carbonate (EC) into polymer-ceramic composite electrolyte for lithium batteries effectively promotes the ionic conductivity. A high ionic conductivity can be attained by adding 40 wt% EC to the polyethylene oxide (PEO)/polyvinylidene fluoride (PVDF)-Li7La3Zr2O12 (LLZO) based polymer-ceramic composite electrolytes, which is 2.64 × 10−4 S cm−1 (tested at room temperature). Furthermore, the cell assembled with lithium metal anode, this composite electrolyte, and LiFePO4 cathode can work more than 80 cycles at room temperature (tested at 0.2 C). The battery delivers a high reversible specific capacity after 89 cycles, which is 119 mAh g−1.  相似文献   

6.
Enabling all‐solid‐state Li‐ion batteries requires solid electrolytes with high Li ionic conductivity and good electrochemical stability. Following recent experimental reports of Li3YCl6 and Li3YBr6 as promising new solid electrolytes, we used first principles computation to investigate the Li‐ion diffusion, electrochemical stability, and interface stability of chloride and bromide materials and elucidated the origin of their high ionic conductivities and good electrochemical stabilities. Chloride and bromide chemistries intrinsically exhibit low migration energy barriers, wide electrochemical windows, and are not constrained to previous design principles for sulfide and oxide Li‐ion conductors, allowing for much greater freedom in structure, chemistry, composition, and Li sublattice for developing fast Li‐ion conductors. Our study highlights chloride and bromide chemistries as a promising new research direction for solid electrolytes with high ionic conductivity and good stability.  相似文献   

7.
All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na4C6O6, that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g?1) and one of the highest specific energies (395 Wh kg?1) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na4C6O6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na4C6O6 as both cathode and anode materials.  相似文献   

8.
The deployment of high‐energy‐density lithium‐metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi‐solid‐state Li metal battery with a deep eutectic solvent (DES)‐based self‐healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2‐(3‐(6‐methyl‐4‐oxo‐1,4‐dihydropyrimidin‐2‐yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES‐based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well‐designed DSP electrolyte simultaneously possesses non‐flammability, high ionic conductivity and electrochemical stability, and dendrite‐free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high‐capacity and a long lifespan at room and elevated temperatures.  相似文献   

9.
Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high‐performance all‐solid‐state rechargeable batteries. Composite electrolytes have been prepared with cubic‐phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high‐resolution solid‐state Li NMR, we are able to track Li ion pathways within LLZO‐PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO‐LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.  相似文献   

10.
地球上钠资源储量丰富、成本低廉,使得钠电池吸引了越来越多研究者的关注。传统的基于有机溶剂电解液体系的钠电池在安全方面存在不足。固态钠离子电池能够有效解决安全的问题,增加电池的安全性能。固态钠离子电池是一种很有前景的储能方式。钠离子固体电解质主要有Na-β-Al_2O_3、钠超离子导体(NASICON)、硫化物、聚合物以及硼氢化物这几类。无机固体电解质相对于聚合物固体电解质,离子电导率有优势。本文总结了三种常见的无机钠离子固体电解质:Na-β-Al_2O_3、NASICON、硫化物的研究进展,从离子电导率和界面稳定性等方面阐述了近年来的发展。  相似文献   

11.
Solid‐state electrolytes have emerged as a promising alternative to existing liquid electrolytes for next generation Li‐ion batteries for better safety and stability. Of various types of solid electrolytes, composite polymer electrolytes exhibit acceptable Li‐ion conductivity due to the interaction between nanofillers and polymer. Nevertheless, the agglomeration of nanofillers at high concentration has been a major obstacle for improving Li‐ion conductivity. In this study, we designed a three‐dimensional (3D) nanostructured hydrogel‐derived Li0.35La0.55TiO3 (LLTO) framework, which was used as a 3D nanofiller for high‐performance composite polymer Li‐ion electrolyte. The systematic percolation study revealed that the pre‐percolating structure of LLTO framework improved Li‐ion conductivity to 8.8×10?5 S cm?1 at room temperature.  相似文献   

12.
Highly conductive solid electrolytes are crucial to the development of efficient all‐solid‐state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li+ ion batteries. However, concerns about the future availability and the price of lithium made Na+ ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na11Sn2PS12, which possesses a room temperature Na+ conductivity close to 4 mS cm?1, thus the highest value known to date for sulfide‐based solids. Structure determination based on synchrotron X‐ray powder diffraction data proves the existence of Na+ vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na+ conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts.  相似文献   

13.
袁安  谭龙  刘莉  应进  汤昊  孙润光 《化学通报》2019,82(8):706-716
全固态锂离子电池具有安全性能好、能量密度高、工作温区广等优点,被广泛应用于便携式电子设备。固态电解质是全固态锂离子电池的关键材料之一,其中的硫化物电解质具有离子电导率高、电化学窗口宽、晶界电阻低和易成膜等特点,被认为最有希望应用于全固态锂离子电池。本文综述了Li_2S-P_2S_5体系电解质的发展状况,包括固态电解质的制备、改性、表征以及电极/固态电解质之间的固-固界面的稳定兼容问题。本文还涉及了以Li_2S-P_2S_5为电解质的全固态锂离子电池性能的研究进展。  相似文献   

14.
In hunting for safe and cost‐effective materials for post‐Li‐ion energy storage, the design and synthesis of high‐performance solid electrolytes (SEs) for all‐solid‐state batteries are bottlenecks. Many issues associated with chemical stability during processing and storage and use of the SEs in ambient conditions need to be addressed. Now, the effect of water as well as oxyhdryl group (.OH) on NaBi3O4Cl2 are investigated by evaluating ionic conductivity. The presence of water and .OH results in an increase in ionic conductivity of NaBi3O4Cl2 owing to diffusion of H2O into NaBi3O4Cl2, partially forming binding .OH through oxygen vacancy repairing. Ab initio calculations reveal that the electrons significantly accumulate around .OH and induce a more negative charge center, which can promote Na+ hopping. This finding is fundamental for understanding the essential role of H2O in halide‐based SEs and provides possible roles in designing water‐insensitive SEs through control of defects.  相似文献   

15.
Ambient‐temperature sodium–sulfur (Na–S) batteries are considered a promising energy storage system due to their high theoretical energy density and low costs. However, great challenges remain in achieving a high rechargeable capacity and long cycle life. Herein we report a stable quasi‐solid‐state Na‐S battery enabled by a poly(S‐pentaerythritol tetraacrylate (PETEA))‐based cathode and a (PETEA‐tris[2‐(acryloyloxy)ethyl] isocyanurate (THEICTA))‐based gel polymer electrolyte. The polymeric sulfur electrode strongly anchors sulfur through chemical binding and inhibits the shuttle effect. Meanwhile, the in situ formed polymer electrolyte with high ionic conductivity and enhanced safety successfully stabilizes the Na anode/electrolyte interface, and simultaneously immobilizes soluble Na polysulfides. The as‐developed quasi‐solid‐state Na‐S cells exhibit a high reversible capacity of 877 mA h g?1 at 0.1 C and an extended cycling stability.  相似文献   

16.
《中国化学快报》2022,33(10):4635-4639
Solid-state batteries with high energy density and safety are promising next-generation battery systems. However, lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability, respectively. Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal. Zr-based lithium halides with low cost and high stability possess great potential. Herein, a small amount of In3+ is introduced in Li2ZrCl6 to synthesize Li2.25Zr0.75In0.25Cl6 electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm. Solid-state batteries using Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5 bilayer solid electrolytes combined with Li-In anode and pristine LiNi0.7Mn0.2Co0.1O2 cathode deliver high initial discharge capacities under different cut-off voltages. This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes, promoting their applications in solid-state batteries.  相似文献   

17.
Lithium metal is an ideal anode for high‐energy rechargeable batteries at low temperature, yet hindered by the electrochemical instability with the electrolyte. Concentrated electrolytes can improve the oxidative/reductive stability, but encounter high viscosity. Herein, a co‐solvent formulation was designed to resolve the dilemma. By adding electrochemically “inert” dichloromethane (DCM) as a diluent in concentrated ethyl acetate (EA)‐based electrolyte, the co‐solvent electrolyte demonstrated a high ionic conductivity (0.6 mS cm?1), low viscosity (0.35 Pa s), and wide range of potential window (0–4.85 V) at ?70 °C. Spectral characterizations and simulations show these unique properties are associated with the co‐solvation structure, in which high‐concentration clusters of salt in the EA solvent were surrounded by mobile DCM diluent. Overall, this novel electrolyte enabled rechargeable metallic Li battery with high energy (178 Wh kg?1) and power (2877 W kg?1) at ?70 °C.  相似文献   

18.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

19.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

20.
Novel soft‐segment ionic polyurethane (linear and crosslinking) have been prepared based up on sodium sulfonate–side chains poly(ethylene oxide) (SPEO). SPEO was synthesized by grafting the sodium sulfonate onto the chain of poly(ethylene oxide) with molecular weights of 400, 600, 800, and 1000. The SPEO and the ionic polyurethane were characterized by elemental analysis, 1H‐NMR, 13C‐NMR, gel permeation chromatography, and impedance analysis. The effect of plasticizer on the ionic conductivity of the polyurethane was also investigated. These solid polymer electrolytes possess a higher ionic conductivity (about 10−6 S/cm at room temperature) than the corresponding sulfonated hard‐segment polyurethane electrolytes. The presence of the hydroxyl group in the electrolyte tends to lower the ionic conductivity. Crosslinking of polyurethane results in the enhancement of the dimensional stability, while maintaining the same level of the ionic conductivity. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 837–845, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号