首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new stable heterocyclic germylene, in which the divalent germanium atom lies between a nitrogen atom and a phosphanylidene phosphorane group, was synthesized. Experimental and theoretical studies revealed the peculiar effect of phosphanylidene phosphorane substituent, which is a stronger π‐donor towards germanium than an amino group is. Because of the weak phosphorus–germanium π‐bond, this new germylene compound shows an enhanced reactivity compared to classical N‐heterocyclic germylenes.  相似文献   

2.
3.
Aziridines are highly useful compounds as building blocks for the synthesis of important organic compounds. Amino acid synthesis by aziridine ring opening reaction is a good example to the use of aziridines. Although this reaction is studied by many groups, the synthesis of amino phosphonic acids is less explored. In this study, we have carried out the ring opening reaction of aziridinyl phosphonates with a variety of alcohols including the more functional propargylic and allylic alcohols. These reactions provided functionalized α‐amino‐β‐alkoxyphosphonates in 40–91 % yield.  相似文献   

4.
A series of β,γ‐unsaturated ketones were isomerized to their corresponding α,β‐unsaturated ketones by the introduction of DABCO in iPrOH at room temperature. The endo‐cyclic double bond (β,γ‐position) on ketone was rearranged to exo‐cyclic double bond (α,β‐position) under the reaction conditions.  相似文献   

5.
The aminobromination of β,β‐dicyanostyrene derivetives with 1,3‐dibromo‐5,5‐dimethylhydantoin (DBDMH) has been systematic studied. The reaction afforded the vicinal haloamino products in good to excellent yields at room temperature (the highest yield was up to 94 %), and the full regiospecificity of all products were achieved catalyzed by NaHCO3 in CH3CN. A possible pathway involving a Michael Addition reaction for this aminobromination was proposed.  相似文献   

6.
A carbonylative α‐arylation process employing unactivated nitriles for the first time is described. The reaction tolerates a range of (hetero)aryl iodides and several nitrile coupling partners. No prefunctionalization of the nitriles is necessary and the resulting β‐ketonitriles are obtained in good to excellent yields. The methodology also allows for a convenient 13C‐labelling of the generated carbonyl moiety.  相似文献   

7.
A highly efficient and general singlet‐oxygen‐initiated one‐pot transformation of readily accessible furans into 5‐hydroxy‐1H‐pyrrol‐2(5H)‐ones has been developed. The methodology was extended to the synthesis of other high‐value α,β‐unsaturated γ‐lactams. This useful set of transformations relies not only on the photosensitizing ability of methylene blue, but also on its redox properties: properties that have until now been virtually ignored in a synthetic context.  相似文献   

8.
A series of β‐bromoketones and β‐chloroketones were synthesized by the addition reactions of α,β‐unsaturated ketones under BX3 (X = Br, Cl) and ethylene glycol reaction system. The α,β‐unsaturated ester also was successfully converted to its corresponding β‐bromoester under the reaction condition.  相似文献   

9.
The reaction of 2‐(benzothiazol‐2‐ylmethyl)‐1,3‐thiazol‐4(5H)‐one 1 with α,β‐cinnamonitrile derivatives 2a‐n have been reported.  相似文献   

10.
Selected 5‐substituted derivatives 4 of 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one were treated with propane‐1,3‐dithiol under various conditions. The unprotected hydroxy ketones underwent cyclization during the dithiol addition and gave the corresponding 3‐(diethoxymethyl)‐2‐oxa‐6,10‐dithiaspiro[4.5]decan‐3‐ols 5 in 80–90% yield as the only products (Scheme 3 and Table 1). These products can be regarded as partly modified carbohydrates in the furanose form. When the benzyl‐protected analogues 10‐Bn of the 1,1‐diethoxy‐5‐hydroxypent‐3‐yn‐2‐one derivatives were treated with the same dithiol, however, no cyclization occurred; instead the corresponding 3‐{2‐[(benzyloxy)methyl]‐1,3‐dithian‐2‐yl}‐1,1‐diethoxypropan‐2‐one derivatives 11‐Bn were formed in good yield (up to 99%; Table 4). These 1,3‐dithianes were and are in the process of being converted to a number of new carbohydrate analogues, and here are reported high‐yield syntheses of functionalized molecules 17 belonging to the 5,5‐diethoxy‐1,4‐dihydroxypentan‐2‐one family of compounds (Table 7), via 15‐Bn (Table 5) and 16‐Bn (Table 6 and Scheme 8).  相似文献   

11.
2‐Ethoxycarbonyl‐substituted 1,3‐dienes and 1,3‐enynes can be stereoselectively synthesized in one pot under mild conditions, in good yields, by the palladium‐catalyzed hydrostannylation of alkynyl esters, followed by Stille coupling with alkenyl or alkynyl halides, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
β‐Bromo‐α,β‐unsaturated amides were coupled and cyclized with formamide in DMF at 100°C in the presence of a catalytic amount of a copper(I) salt along with a base to give the corresponding pyrimidinones in good yields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

14.
γ‐Halocarbanions, short‐lived intermediates, add to electron‐deficient double bonds of aldehydes, Michael acceptors, and imines to form anionic adducts that enter intramolecular 1,5‐substitution to form five‐membered rings of tetrahydrofurans, cyclopentanes, and pyrrolidines, respectively. Although the γ‐halocarbanions can be generated by simple deprotonation of appropriate precursors, a wealth of other methods based on Lewis acid‐catalyzed opening of cyclopropanes with formation of dipolar species utilizes a similar mechanistic scheme. In our review, we analyze kinetic relations of elementary processes in the multistep transformations, and demonstrate how structural factors influence the mechanisms and selectivity of the reaction.  相似文献   

15.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

16.
17.
An addition to the family : The introduction of β‐amino acid residues into a modified amyloid β peptide fragment resulted in well‐defined helical nanoribbons (see cryo‐TEM image) comprising β strands mainly oriented perpendicular to the ribbon axis. The nanoribbons order into a flow‐aligning nematic phase at higher concentration. The β‐strand nanoribbon structure is an addition to the known set of secondary structures adopted by β‐peptides.

  相似文献   


18.
Cyclic β‐bromo‐α,β‐unsaturated carboxylic acids are carbonylatively cyclized with primary amines under carbon monoxide pressure in MeCN in the presence of a catalytic amount of PdCl2(PPh3)2 to give N‐alkylmaleimides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A novel hexa‐armed and star‐shaped polymer containing cholesterol end‐capped poly(ε‐caprolactone) arms emanating from a phosphazene core (N3P3‐(PCL‐Chol)6) was synthesized by a combination of ring‐opening polymerization and “click” chemistry techniques. For this purpose, the terminal ? OH groups of the synthesized precursor (N3P3‐(PCL‐OH)6) were converted into Chol through a series of reaction. Both N3P3‐(PCL‐OH)6 and N3P3‐(PCL‐Chol)6 were then employed in the preparation of supramolecular inclusion complexes (ICs) with β‐cyclodextrin (β‐CD). The latter formed ICs with β‐CD in higher yield. The host–guest stoichiometry (ε‐CL:β‐CD, mol:mol) in the ICs of N3P3‐(PCL‐Chol)6 was found to be 1.2. The formation of supramolecular ICs of N3P3‐(PCL‐Chol)6 with β‐CD was confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopic methods, wide‐angle X‐ray diffraction (WAXD), and thermal analysis techniques. WAXD data showed that the obtained ICs with N3P3‐(PCL‐Chol)6 had a channel‐type crystalline structure, indicating the suppression of the original crystallization of N3P3‐(PCL‐Chol)6 in β‐CD cavities. Moreover, the thermal stabilities of ICs were found to be higher than those of the free star polymer and β‐CD. Furthermore, the surface properties of N3P3‐(PCL‐Chol)6 and its ICs with β‐CD were investigated by static contact angle measurements. The obtained results proved that the wettability of N3P3‐(PCL‐Chol)6 successfully increased with the formation of its ICs with β‐CD. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3406–3420  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号