首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phosphole‐fused porphyrin dimer, as a representative of a new class of porphyrins with a phosphorus atom, was synthesized for the first time. The porphyrin dimer exhibits remarkably broadened absorption, indicating effective π‐conjugation over the two porphyrins through the phosphole moiety. The porphyrin dimer possesses excellent electron‐accepting character, which is comparable to that of a representative electron‐accepting material, [60]PCBM. These results provide access to a new class of phosphorus‐containing porphyrins with unique optoelectronic properties.  相似文献   

2.
In this work, we report the synthesis, spectroscopic characterization, and theoretical analysis of a linearly conjugated pentacene‐fused porphyrin dimer and cross‐conjugated quinone‐fused dinaphtho[2,3]porphyrins. These multichromophoric systems display non‐typical UV‐visible absorptions of either porphyrins or pentacenes/quinones. UV‐visible, emission and magnetic circular dichroism (MCD) spectroscopy suggest strong electronic interactions among the multichromophores in the system. DFT calculations revealed the delocalization of the HOMOs and LUMOs spanning the entire dimer and linker assembly. The pentacene‐fused porphyrin dimer is significantly more stable than both the corresponding pentacene and the heptacene derivatives. The availability of these huge π‐extended and electronically highly interactive multichromophoric systems promises unprecedented electronic and photophysical properties.  相似文献   

3.
New opp‐dibenzoporphyrins were prepared in a concise method that was based on a Pd0‐catalyzed cascade reaction. These porphyrins, which contained carboxylic‐acid linker groups on benzene rings that were fused to the porphyrin at their β,β′‐positions, were examined as sensitizers for dye‐sensitized solar cells for the first time. Whereas all of the porphyrins showed solar‐energy‐to‐electricity conversion, an opp‐dibenzoporphyrin with conjugated carboxylic‐acid linkers displayed the highest conversion efficiency and an exceptionally high Jsc value. Cyclic voltammetry of these porphyrins suggested that the fusion of two aromatic benzene rings onto the periphery of the porphyrin lowered the HOMO–LUMO energy gap; the incorporation of a conjugated carboxylic‐acid linker group decreased the HOMO–LUMO gap even further. These CV data are consistent with DFT calculations for these porphyrins and agree well with the UV/Vis absorption‐ and fluorescence spectra of these porphyrins.  相似文献   

4.
Mono‐ and bis(diphenylborane)‐fused porphyrins were synthesized from the corresponding β‐(2‐trimethylsilylphenyl)‐substituted porphyrins through the sequence of Si–B exchange reaction, intramolecular bora‐Friedel–Crafts reaction, and ring‐closing Si–B exchange reaction. Effective electronic interactions of the empty p‐orbital of the boron atom with the porphyrin π‐circuit lead to red‐shifted absorption spectra and substantially decreased LUMO energy levels. Pyridine adds at the boron center to cause disruption of the electronic interaction of the boron atom with large association constants (1.9–17×104 m ?1) depending on the central metal at the porphyrin. The ZnII complex behaved as a hetero‐dinuclear Lewis acid, exhibiting regioselective binding of pyridines at the boron or the zinc center.  相似文献   

5.
Doubly and quadruply quinoline‐fused porphyrins were effectively synthesized through a reaction sequence consisting of Suzuki–Miyaura coupling of β‐borylated porphyrins with 2‐iodoaniline and subsequent Pictet–Spengler cyclization. These quinoline‐fused porphyrins display red‐shifted absorption bands and higher electron‐accepting abilities. This synthetic protocol also allowed the synthesis of phenanthroline‐fused porphyrin dimers, which bound either a NiII or ZnII cation. The resultant metal complexes displayed further red shifted absorption spectra and molecular twists to effect an almost perpendicular arrangement of the two porphyrins.  相似文献   

6.
The efficacy of carbon‐bridged oligo(phenylenevinylenes)s (COPVs) as light‐harvesting antenna for porphyrins is demonstrated using a series of 5,15‐di‐COPVn‐substituted free‐base and zinc porphyrins, COPVn‐MP‐COPVn (n=1–3, M=H2, Zn). These molecules were synthesized by Suzuki–Miyaura cross‐coupling reactions of COPVn‐Bpin and Br‐H2P‐Br . The absorption spectra of these compounds in solution show a significant expansion of the Soret band region together with a bathochromic shift of the Q band, suggesting a significant interaction between these chromophores in the ground state. The photoluminescence quantum yield of the porphyrin‐COPV conjugates is enhanced up to four times relative to the parent porphyrins. Theoretical calculations also indicated interactions between these chromophores in the HOMO, which suggests that the light‐harvesting ability stems from the expansion of the π‐electron‐conjugation system.  相似文献   

7.
A reaction sequence of regioselective peripheral bromination, Suzuki–Miyaura coupling with 2‐borylated thiophene or pyrrole, and oxidative ring‐closure with FeCl3 allowed the synthesis of heterole‐fused earring porphyrins 4Pd and 9Pd from the parent earring porphyrin 1 . Differently pyrrole‐fused porphyrins 5H and 6H and their PdII complexes 5Pd and 6Pd were also synthesized. The structures of 4Pd , 5H, 6Pd , and 8Pd have been revealed by X‐ray analysis to be slightly twisted owing to constraints imposed by heterole‐fused structures. 5Pd exhibits an intensified band at 1505 nm, while 4Pd and 9Pd display small but remarkably red‐shifted absorption bands reaching around 2200 nm.  相似文献   

8.
A reaction sequence of regioselective peripheral bromination, Suzuki–Miyaura coupling with 2‐borylated thiophene or pyrrole, and oxidative ring‐closure with FeCl3 allowed the synthesis of heterole‐fused earring porphyrins 4Pd and 9Pd from the parent earring porphyrin 1 . Differently pyrrole‐fused porphyrins 5H and 6H and their PdII complexes 5Pd and 6Pd were also synthesized. The structures of 4Pd , 5H, 6Pd , and 8Pd have been revealed by X‐ray analysis to be slightly twisted owing to constraints imposed by heterole‐fused structures. 5Pd exhibits an intensified band at 1505 nm, while 4Pd and 9Pd display small but remarkably red‐shifted absorption bands reaching around 2200 nm.  相似文献   

9.
Density functional theory (DFT) and time‐dependent DFT (TDDFT) are applied to study seven asymmetric π‐conjugated porphyrins with extended benzoheterocycles: quinoline, indole, benzoimidazole, benzothiazole, benzooxazole, 2,1,3‐benzothiadiazole, and 2,1,3‐benzoxadiazole. The solvation effects on the excitation energies for these porphyrin derivatives in chloroform are taken into account by using the continuum model (C‐PCM) combined with TDDFT, and this method makes a closer agreement with the experimental values, especially for the B‐bands of these objects. Great efforts have been made on investigating the influences of the fused aromatic units of the porphyrins on the absorption properties as these can be particularly important for many applications. Benzoheterocycle introduction and solvent effects have been systemically investigated, and close agreement is obtained between calculated and measured UV–vis spectra. These theoretical data could shed light on future synthetic chemistry. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

10.
Ruthenocene‐type hybrid complexes with N‐fused porphyrinato ligands, [Ru(NFp)Cp] (NFp=N‐fused porphyrin, Cp=cyclopentadienyl), have been prepared and characterized by NMR and UV/Vis/NIR spectroscopy, cyclovoltammetry, and X‐ray crystallography. [Ru(NFp)Cp] is a common low‐spin ruthenium(II) complex and shows strong aromaticity. The Ru–Cp distance (1.833 Å) in [Ru(NFp)Cp] is comparable to that in [RuCp2] (1.840 Å). DFT calculations on [Ru(NFp)Cp] showed the unequivocal contribution of the RuCp moiety as well as the NFp moiety to both the HOMO and LUMO, constructing a three‐dimensional d–π conjugated system. The HOMO–LUMO gaps of [Ru(NFp)Cp] are insensitive to the substituents on the NFp ligand, which is illustrated spectroscopically as well as theoretically. This is in sharp contrast to the ligand precursor, the N‐fused porphyrin, in which the HOMO–LUMO gap is affected by substituents in a similar manner to standard porphyrins and related macrocycles.  相似文献   

11.
A reaction sequence of 2‐(diphenylsilyl)phenylation by Negishi coupling and intramolecular sila‐Friedel–Crafts reaction has been explored for the synthesis of mono‐triphenylsilane‐fused porphyrins 5 M and 6 M (M= Ni, Zn) and bis‐triphenylsilane‐fused porphyrins 7 M and 8 Ni . A triply linked triphenylsilane‐fused NiII porphyrin, 13 Ni , was synthesized in a stepwise manner involving the above reaction sequence and a final Pd‐catalyzed C?H activating arylative cyclization. The silicon atom in 13 Ni takes a distorted planarized structure with an almost perpendicular Si‐phenyl group, causing an electronic effect due to effective σ*–π* interaction.  相似文献   

12.
In this study we synthesized two‐ and four‐armed porphyrins – bearing two carboxyl and four 2‐aminoquinolino functionalities, respectively, at their meso positions – as a complementary hydrogen bonding pair for the self‐assembly of a D2‐symmetric porphyrin trimer host. Two units of the two‐armed porphyrin and one unit of the four‐armed porphyrin self‐assembled quantitatively into the D2‐symmetric porphyrin trimer, stabilized through ammidinium‐carboxylate salt bridge formation, in CH2Cl2 and CHCl3. The porphyrin trimer host gradually bound two units of 1,3,5‐trinitrobenzene between the pair of porphyrin units, forming a five‐layer aromatic structure. At temperatures below ?40 °C, the rates of association and dissociation of the complexes were slow on the NMR spectroscopic time scale, allowing the 1 : 1 and 1 : 2 complexes of the trimer host and trinitrobenzene guest(s) to be detected independently when using less than 2 eq of trinitrobenzene. Vis titration experiments revealed the values of K1 (2.1±0.4×105 M?1) and K2 (2.2±0.06×104 M?1) in CHCl3 at room temperature.  相似文献   

13.
New hybrid porphyrin tapes comprising meso‐3,5‐di‐tert‐butylphenyl‐substituted ZnII‐porphyrins ( D ) and meso‐pentafluorophenyl‐substituted ZnII‐porphyrins ( A ) were synthesized via cross‐condensation of meso‐formyl porphyrins 1 , 5 , and 9 with oligopyrromethanes 2 and 6 as key steps. These hybrid tapes exhibit improved solubilities and enhanced chemical stability as compared with original Dn porphyrin tapes, and all display remarkably coplanar structures favorable for π‐conjugation. The absorption spectrum of ADDA displays Q‐like bands at 1400 and 1657 nm with a vibronic structure characteristic of porphyrinoids. The cyclic voltammograms exhibited positively shifted oxidation and reduction waves in the order of DDD < DAD < ADA < AAA . Tetrameric tape ADDA displays five reversible waves in a narrow range of 1.13 V. Two‐photon absorption (TPA) measurement confirmed that the π‐conjugation path is extended from 12 to ADDA and the molecular polarizability of ADA is larger than that of AAA .  相似文献   

14.
Shape‐ and functionality‐controlled organization of porphyrin derivatives–C60 supramolecular assemblies using TiO2 nanotubes and nanoparticles has been achieved for the development of photochemical solar cells. The differences in the efficiency of light‐energy conversion of these solar cells are explained on the basis of the geometrical orientation of the porphyrins with respect to the TiO2 surface and the supramolecular complex formed with C60. The maximum photon‐conversion efficiency (IPCE) of 60 % obtained with TiO2 nanotube architecture is higher than the value obtained with nanoparticle architecture. The results presented in this study show the importance of substrate morphology in promoting electron transport within the mesoscopic semiconductor film.  相似文献   

15.
A benzene‐1,3,5‐triaminyl radical fused with three ZnII‐porphyrins was synthesized through a three‐fold oxidative fusion reaction of 1,3,5‐tris(ZnII‐porphyrinylamino)benzene followed by oxidation with PbO2 as key steps. This triaminyl radical has been shown to possess a quartet ground state with a doublet–quartet energy gap of 3.1 kJ mol?1 by superconducting quantum interference device (SQUID) studies. Despite its high‐spin nature, this triradical is remarkably stable, which allows its separation and recrystallization under ambient conditions. Moreover, this triradical can be stored as a solid for more than one year without serious deterioration. The high stability of the triradical is attributed to effective spin delocalization over the porphyrin segments and steric protection at the nitrogen centers and the porphyrin meso positions.  相似文献   

16.
We report the first results of persistent spectral hole burning of dendrimer porphyrins having three‐, four‐, or five‐layered aryl ether dendritic arrays. We evaluate structural relaxations of dendrimer framework around the porphyrin core at low temperatures. A large environmental change around the porphyrin core, as evaluated from the hole area, was suppressed in dendrimer porphyrins of higher generation numbers, whereas a small environmental change, as evaluated from hole width, showed no dependence on the number of generations. The dendrimer porphyrins showed sharp holes at 20 K, suggesting a long dephasing time and the suppression of spontaneous spectral diffusion. The results of dendrimer‐embedded polymer sample indicated that the structural relaxation of polymer chain outside the dendrimer does not have an influence on the resonant frequency of the porphyrin core. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 210–215, 2002  相似文献   

17.
The synthesis of a series of novel core‐modified and fused‐ring‐expanded tetraphenylporphyrins is reported. Theoretical calculations and magnetic circular dichroism (MCD) and fluorescence spectroscopic measurements were used to analyze the effect of core modification with Group 16 oxygen, sulfur, selenium, and tellurium atoms on the optical properties and electronic structures of the porphyrins. Marked redshifts of the Q and B bands and accelerated intersystem‐crossing rates were observed, thus making these compounds potentially suitable for use in a variety of applications. The scope for further fine‐tuning of these optical properties based on additional structural modifications, such as the incorporation of fused benzene rings to form ABAB structures by using a thiophene precursor with a fused bicyclo[2.2.2]octadiene ring and the introduction of various substituents onto the meso‐phenyl rings, is also examined.  相似文献   

18.
Three novel porphyrins, including two Schiff‐bases porphyrins, 5,10,15‐triphenyl‐20‐[4‐(2‐(4‐formyl)phenoxy)ethoxy]phenyl porphyrin ( H2Pp ( 1 )), 5,10,15‐triphenyl‐20‐[4‐(2‐(4‐hydroxyimino)phenoxy)ethoxy]phenyl porphyrin ( H2Pp ( 2 )) and 5,10,15‐triphenyl‐20‐[4‐(2‐(4‐m‐hydroxyanilinodeneformyl)phenoxy)ethoxy]phenyl porphyrin ( H2Pp ( 3 )), as well as three metalloporphyrins ( CuPp ( 1a ), ZnPp ( 1b ), and CoPp ( 1c )) of porphyrin H2Pp ( 1 ) were synthesized. Their molecular structures were characterized by 1H‐NMR, MS, UV/VIS, and FT‐IR spectra. Furthermore, they were evaluated by their cytotoxicities against human epidermal squamous cell carcinoma cell (A431) and normal human horn cells (HaCaT) in vitro with MTT assay. Interestingly, these porphyrins and metalloporphyrins, which had a negligible cytotoxicity to HaCaT cells, showed highly cytotoxicity against A431 cells with IC50 values in the range of 6.6–9.8 μM , and metalloporphyrins exhibited higher cytotoxicity than that of metal‐free porphyrins.  相似文献   

19.
Tetraphenyl N‐confused porphyrins (NCTPP) bearing amino substituents were synthesized for the purpose of functionalization toward water‐soluble and biocompatible molecules. The Pd‐catalyzed coupling reaction of 4‐ethynylaniline with the 2‐bromo NCTPP Ag(III) complex yields Pd(II) and Ag(III) coupling products ( 4a and 4b ), at 39% and 55%, respectively. The identities of these products were confirmed by the differences in the isotope patterns of their molecular ion peaks as well as other spectroscopic data. The Ag(III) coupling product, 4b , was demetallated to form the final product, 5 , with a yield of 85%. The meso‐tetrakis(4‐nitrophenyl) N‐confused porphyrin, 6 , was synthesized through a methanesulfonic acid catalyzed condensation of pyrrole with the 4‐nitrobenzaldehyde with a yield of 6.8%. Reduction of the compound to meso tetrakis(4‐aminophenyl) N‐confused porphyrin, 7 , was achieved with a yield of 90%.  相似文献   

20.
5,10,15‐Tris(pentafluorophenyl)tetrapyrromethane was efficiently prepared through a route involving stepwise diaroylation of 5‐pentafluorophenyldipyrromethane. A2B6‐type [36]octaphyrins were prepared by the cross condensation of the tetrapyrromethane with aryl aldehydes in moderate yields. A2B6‐type [36]octaphyrins bearing 2,4,6‐trifluorophenyl, 2,6‐dichlorophenyl, and phenyl substituents underwent CuII‐metalation‐induced fragmentation to give two molecules of AB3‐type CuII porphyrins. A2B6‐type [36]octaphyrin bearing 3‐thienyl substituents underwent thermal N‐thienyl fusion reactions to provide a modestly aromatic [38]octaphyrin, which, upon treatment with MnO2, underwent further N‐thienyl fusion and subsequent oxidation to give a nonaromatic doubly N‐thienyl fused [36]octaphyrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号