首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

2.
The cyanide building block [FeIII(pzphen)(CN)4] and its four lanthanide complexes [{FeIII(pzphen)(CN)4}2LnIII(H2O)5(DMF)3] · (NO3) · 2(H2O) · (CH3CN) [Ln = Nd ( 1 ), Sm ( 2 ), DMF = dimethyl formamide] and [{FeIII(pzphen)(CN)4}2LnIII(NO3)(H2O)2(DMF)2](CH3CN) [Ln = Gd ( 3 ), Dy ( 4 )] were synthesized and structurally characterized by single‐crystal X‐ray diffraction. Compounds 1 and 2 are ionic salts with two [FeIII(pzphen)(CN)4] cations and one LnIII ion, but compounds 3 and 4 are cyano‐bridged FeIIILnIII heterometallic 3d‐4f complexes exhibiting a trinuclear structure in the same conditions. Magnetic studies show that compound 3 is antiferromagnetic between the central FeIII and GdIII atoms. Furthermore, the trinuclear cyano‐bridged FeIII2DyIII compound 4 displays no single‐molecular magnets (SMMs) behavior by the alternating current magnetic susceptibility measurements.  相似文献   

3.
A key challenge in the design of magnetic molecular switches is to obtain bistability at room temperature. Here, we show that application of moderate pressure makes it possible to convert a paramagnetic FeIII2CoII2 square complex into a molecular switch exhibiting a full dia‐ to paramagnetic transition: FeIICoIII ? FeIIICoII. Moreover, the complex follows a rare behavior: the higher the pressure, the broader the magnetic hysteresis. Thus, the application of an adequate pressure allows inducing a magnetic bistability at room temperature with predictable hysteresis width. The structural studies at different pressures suggest that the pressure‐enhanced bistability is due to the strengthening of intermolecular interactions upon pressure increase. An original microscopic Ising‐like model including pressure effects is developed to simulate this unprecedented behavior. Overall, this study shows that FeCo complexes could be very sensitive piezo switches with potential use as sensors.  相似文献   

4.
A disk‐shaped [FeIII7(Cl)(MeOH)63‐O)3(μ‐OMe)6 (PhCO2)6]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral FeIII is 0.733 Å above the almost co‐planar FeIII6 wheel, to which it is connected through three μ3‐oxide bridges. For this iron‐oxo core, the magnetic susceptibility analysis proposed a Heisenberg–Dirac–van Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The 57Fe Mössbauer (MS) analysis verifies that the central FeIII ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral FeIII ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.  相似文献   

5.
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high‐spin cobalt(II) complexes, namely [CoII(dmf)6](BPh4)2 ( 1 ) and [CoII2(sym‐hmp)2](BPh4)2 ( 2 ), in which dmf=N,N‐dimethylformamide; sym‐hmp=2,6‐bis[(2‐hydroxyethyl)methylaminomethyl]‐4‐methylphenolate, and BPh4?=tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual CoII site. In compound 1 , this approach reveals the correlation between the single‐ion easy magnetization direction and a trigonal elongation axis of the CoII coordination octahedron. In exchange‐coupled dimer 2 , the determination of the individual CoII magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both CoII sites deviate from the single‐ion behavior because of antiferromagnetic exchange coupling.  相似文献   

6.
The novel iron(III) porphyrin dendrimers of generation zero ([ 1 ⋅FeIII]Cl), one ([ 2 ⋅FeIII]Cl), and two ([ 3 ⋅FeIII]Cl) (Fig. 1) were prepared (Schemes 1 and 3) as models of heme monooxygenases. They feature controlled axial ligation at the Fe center by one imidazole tethered to the porphyrin core and possess a vacant coordination site available for ligand binding and catalysis. The high purity of the dendrimers and the absence of structural defects was demonstrated by matrix‐assisted laser‐desorption‐ionization time‐of‐flight (MALDI‐TOF) mass spectrometry (Fig. 3). The electronic properties of the FeIII porphyrin dendrimers and comparison compounds [ 4 ⋅FeIII]Cl and [ 12 ⋅FeIII(1,2‐Me2Im)]Cl (1,2‐Me2Im=1,2‐dimethylimidazole) were investigated by UV/VIS and EPR (electronic paramagnetic resonance) spectroscopy, as well as by measurements of the magnetic moments by the Evans‐Scheffold method. Epoxidation of olefins and oxidation of sulfides to sulfoxides, catalyzed by the new dendritic metalloporphyrins, were investigated in CH2Cl2 with iodosylbenzene as the oxidant (Tables 1 and 2). The total turnover numbers were found to increase with the size of the dendrimer, due to improved catalyst stability at higher dendritic generations (Figs. 4 and 5). The second‐generation complex [ 3 ⋅FeIII]Cl was, therefore, the most efficient catalyst in the series, despite the fact that its active site is considerably hindered by the encapsulation inside the sterically demanding, fluctuating dendritic wedges. Very high product selectivities were observed in all oxidation reactions, regardless of dendrimer generation.  相似文献   

7.
A series of isostructural cyano‐bridged MnIII(h.s.)–MIII(l.s.) alternating chains, [MnIII(5‐TMAMsalen)MIII(CN)6] ? 4H2O (5‐TMAMsalen2?=N,N′‐ethylenebis(5‐trimethylammoniomethylsalicylideneiminate), MnIII(h.s.)=high‐spin MnIII, MIII(l.s.)=low‐spin CoIII, Mn? Co ; FeIII, Mn? Fe ; MnIII, Mn? Mn ; CrIII, Mn? Cr ) was synthesized by assembling [MnIII(5‐TMAMsalen)]3+ and [MIII(CN)6]3?. The chains present in the four compounds, which crystallize in the monoclinic space group C2/c, are composed of an [‐MnIII‐NC‐MIII‐CN‐] repeating motif, for which the ‐NC‐MIII‐CN‐ motif is provided by the [MIII(CN)6]3? moiety adopting a trans bridging mode between [MnIII(5‐TMAMsalen)]3+ cations. The MnIII and MIII ions occupy special crystallographic positions: a C2 axis and an inversion center, respectively, forming a highly symmetrical chain with only one kind of cyano bridge. The Jahn–Teller axis of the MnIII(h.s.) ion is perpendicular to the N2O2 plane formed by the 5‐TMAMsalen tetradentate ligand. These Jahn–Teller axes are all perfectly aligned along the unique chain direction without a bending angle, although the chains are corrugated with an Mn‐Naxis‐C angle of about 144°. In the crystal structures, the chains are well separated with the nearest inter‐chain M???M distance being relatively large at 9 Å due to steric hindrance of the bulky trimethylammoniomethyl groups of the 5‐TMAMsalen ligand. The magnetic properties of these compounds have been thoroughly studied. Mn? Fe and Mn? Mn display intra‐chain ferromagnetic interactions, whereas Mn? Cr is characterized by an antiferromagnetic exchange that induces a ferrimagnetic spin arrangement along the chain. Detailed analyses of both static and dynamic magnetic properties have demonstrated without ambiguity the single‐chain magnet (SCM) behavior of these three systems, whereas Mn? Co is merely paramagnetic with SMn=2 and D/kB=?5.3 K (D being a zero‐field splitting parameter). At low temperatures, the Mn? M compounds with M=Fe, Mn, and Cr display remarkably large M versus H hysteresis loops for applied magnetic fields along the easy magnetic direction that corresponds to the chain direction. The temperature dependence of the associated relaxation time for this series of compounds systematically exhibits a crossover between two Arrhenius laws corresponding to infinite‐chain and finite‐chain regimes for the SCM behavior. These isostructural hetero‐spin SCMs offer a unique series of alternating [‐Mn‐NC‐M‐CN‐] chains, enabling physicists to test theoretical SCM models between the Ising and Heisenberg limits.  相似文献   

8.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

9.
Low‐valent iron centers are critical intermediates in chemical and bio‐chemical processes. Herein, we show the first example of a low‐valent FeI center stabilized in a high‐valent polyoxometalate framework. Electrochemical studies show that the FeIII‐functionalized molecular vanadium(V) oxide (DMA)[FeIIIClVV12O32Cl]3− (DMA=dimethylammonium) features two well‐defined, reversible, iron‐based electrochemical reductions which cleanly yield the FeI species (DMA)[FeIClVV12O32Cl]5−. Experimental and theoretical studies including electron paramagnetic resonance spectroscopy and density functional theory computations verify the formation of the FeI species. The study presents the first example for the seemingly paradoxical embedding of low‐valent metal species in high‐valent metal oxide anions and opens new avenues for reductive electron transfer catalysis by polyoxometalates.  相似文献   

10.
The influence of magnetic interactions to the magnetization dynamics was well experimentally studied in a 3d‐4f single‐molecule magnet (SMM) [TbIII2FeIII3(μ5‐O)L2(NO3)4Cl] ( 1 , H4L = N,N,N’,N’‐tetrakis(2‐hydroxyethyl)ethylene diamine) and its diamagnetic‐ ion‐diluted samples. Significant ferromagnetic coupling between TbIII and FeIII ions and SMM behavior of 1 were observable, which proved clearly that the magnetic interaction between 3d‐4f spin carriers has also an excessive impact on fine‐tuning the magnetization dynamic behaviors of 3d‐4f complexes.  相似文献   

11.
We have investigated the single‐molecule magnets [MnIII2(5‐Brsalen)2(MeOH)2MIII(CN)6]NEt4 (M=Os ( 1 ) and Ru ( 2 ); 5‐Brsalen=N,N′‐ethylenebis(5‐bromosalicylidene)iminate) by frequency‐domain Fourier‐transform terahertz electron paramagnetic resonance (THz‐EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three‐axis anisotropic magnetic exchange coupling between MnIII and RuIII or OsIII ions, respectively. Analysis by means of a spin‐Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2 , whereas a linear geometry would lead to an Ising‐type exchange coupling.  相似文献   

12.
Studies on the magnetic properties of the molecular antiferromagnetic material {N(n-C5H11)4[MnIIFeIII(ox)3]}, carried out by various physical techniques (AC/DC magnetic susceptibility, magnetization, heat capacity measurements and Mössbauer spectroscopy) at low temperatures, have been presented. Different experimental observations complement each other and provide a clue for the observation of an uncompensated magnetization below the Néel temperature and short-range correlations persisting high above TN. It is understood that the honeycomb layered structure of the compound contains non-equivalent magnetic sub-lattices, (MnII–ox–FeIIIA–...) and (MnII–ox–FeIIIB–...), where different responses of the FeIIIA and FeIIIB spin sites towards an external magnetic field might be responsible for the observation of the uncompensated magnetization in this compound at T < TN. The present magnetic system is an S = 5/2 2-D Heisenberg antiferromagnet system with the intralayer exchange parameter J/kB = −3.29 K. A very weak interlayer exchange interaction was anticipated from the spin wave modeling of the magnetic heat capacity for T < 0.5TN. The positive sign of the coupling between the layers has been concluded from the Mössbauer spectrum in the applied magnetic field. Frustration in the magnetic interactions gives rise to the uncompensated magnetic moment in this compound at low temperatures.  相似文献   

13.
Eight new multinuclear FeIII and CrIII complexes involving the tetradentate Schiff bases N,N′‐bis(salicylidene)ethylenediamine (salenH2) or N,N′‐bis(salicylidene)benzene‐1,2‐diamine (salophH2) and the two new ligands 4,4′,4″,4′′′,4′′′′,4′′′″‐[1,3,5‐triazine‐2,4,6‐triyltris(nitrilomethylidyne‐4,1‐phenyleneoxy‐1,3,5‐triazine‐6,2,4‐triyldiimino)]hexakis[benzoic acid] ( 4 ) or 5,5′,5″,5′′′,5′′′′,5′′′″‐[1,3,5‐triazine‐2,4,6‐triyltris(nitrilomethylidyne‐4,1‐phenyleneoxy‐1,3,5‐triazine‐6,2,4‐triyldiimino)]hexakis[benzene‐1,3‐dicarboxylic acid] ( 5 ) were synthesized (Schemes 1 and 2) and characterized by means of 1H‐NMR and FT‐IR spectroscopy, elemental analysis, LC/MS analysis, AAS (atomic‐absorption spectrum) analysis, thermal analyses, and magnetic‐susceptibility measurements. The complexes can also be characterized as low‐spin distorted‐octahedral FeIII and CrIII complexes bridged by carboxylato moieties.  相似文献   

14.
By using paramagnetic [Fe(CN)6]3? anions in place of diamagnetic [Co(CN)6]3? anions, two field‐induced mononuclear single‐molecular magnets, [Nd(18‐crown‐6)(H2O)4][Co(CN)6] ? 2 H2O ( 1 ) and [Nd(18‐crown‐6)(H2O)4][Fe(CN)6] ? 2 H2O ( 2 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction analysis revealed that compounds 1 and 2 were ionic complexes. The NdIII ions were located inside the cavities of the 18‐crown‐6 ligands and were each bound by four water molecules on either side of the crown ether. Magnetic investigations showed that these compounds were both field‐induced single‐molecular magnets. By comparing the slow relaxation behaviors of compounds 1 and 2 , we found significant differences between the direct and Raman processes for these two complexes, with a stronger direct process in compound 2 at low temperatures. Complete active space self‐consistent field (CASSCF) calculations were also performed on two [Nd(18‐crown‐6)(H2O)4]3+ fragments of compounds 1 and 2 . Ab initio calculations showed that the magnetic anisotropies of the NdIII centers in complexes 1 and 2 were similar to each other, which indicated that the difference in relaxation behavior was not owing to the magnetic anisotropy of NdIII. Our analysis showed that the magnetic interaction between the NdIII ion and the low‐spin FeIII ion in complex 2 played an important role in enhancing the direct process and suppressing the Raman process of the single‐molecular magnet.  相似文献   

15.
A key challenge in the design of magnetic molecular switches is to obtain bistability at room temperature. Here, we show that application of moderate pressure makes it possible to convert a paramagnetic FeIII2CoII2 square complex into a molecular switch exhibiting a full dia- to paramagnetic transition: FeIICoIII ⇔ FeIIICoII. Moreover, the complex follows a rare behavior: the higher the pressure, the broader the magnetic hysteresis. Thus, the application of an adequate pressure allows inducing a magnetic bistability at room temperature with predictable hysteresis width. The structural studies at different pressures suggest that the pressure-enhanced bistability is due to the strengthening of intermolecular interactions upon pressure increase. An original microscopic Ising-like model including pressure effects is developed to simulate this unprecedented behavior. Overall, this study shows that FeCo complexes could be very sensitive piezo switches with potential use as sensors.  相似文献   

16.
It is promising and challenging to manipulate the electronic structures and functions of materials utilizing both metal‐to‐metal charge transfer (MMCT) and spin‐crossover (SCO) to tune the valence and spin states of metal ions. Herein, a metallocyanate building block is used to link with a FeII‐triazole moiety and generates a mixed‐valence complex {[(Tp4‐Me)FeIII(CN)3]9[FeII4(trz‐ph)6]}?[Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 ; trz‐ph=4‐phenyl‐4H‐1,2,4‐triazole). Moreover, MMCT occurs between FeIII and one of the FeII sites after heat treatment, resulting in the generation of a new phase, {[(Tp4‐Me)FeII(CN)3][(Tp4‐Me)FeIII(CN)3]8 [FeIIIFeII3(trz‐ph)6]}? [Ph3PMe]2?[(Tp4‐Me)FeIII(CN)3] ( 1 a ). Structural and magnetic studies reveal that MMCT can tune the two‐step SCO behavior of 1 into one‐step SCO behavior of 1 a . Our work demonstrates that the integration of MMCT and SCO can provide a new alternative for manipulating functional spin‐transition materials with accessible multi‐electronic states.  相似文献   

17.
Compounds [Fe3Ln(tea)2(dpm)6] ( Fe3Ln ; Ln= Tb–Yb, H3tea=triethanolamine, Hdpm=dipivaloylmethane) were synthesized as lanthanide(III)‐centered variants of tetrairon(III) single‐molecule magnets (Fe4) and isolated in crystalline form. Compounds with Ln=Tb–Tm are isomorphous and show crystallographic threefold symmetry. The coordination environment of the rare earth, given by two tea3? ligands, can be described as a bicapped distorted trigonal prism with D3 symmetry. Magnetic measurements showed the presence of weak ferromagnetic Fe ??? Ln interactions for derivatives with Tb, Dy, Ho, and Er, and of weak antiferromagnetic or negligible coupling in complexes with Tm and Yb. Alternating current susceptibility measurements showed simple paramagnetic behavior down to 1.8 K and for frequencies reaching 10000 Hz, despite the easy‐axis magnetic anisotropy found in Fe3Dy , Fe3Er , and Fe3Tm by single‐crystal angle‐resolved magnetometry. Relativistic quantum chemistry calculations were performed on Fe3Ln (Ln=Tb–Tm): the ground J multiplet of Ln3+ ion is split by the crystal field to give a ground singlet state for Tb and Tm, and a doublet for Dy, Ho, and Er with a large admixture of mJ states. Gyromagnetic factors result in no predominance of gz component along the threefold axis, with comparable gx and gy values in all compounds. It follows that the environment provided by the tea3? ligands, though uniaxial, is unsuitable to promote slow magnetic relaxation in Fe3Ln species.  相似文献   

18.
The cyanidocobaltate of formula fac-PPh4[CoIII(Me2Tp)(CN)3] ⋅ CH3CN ( 1 ) has been used as a metalloligand to prepare polynuclear magnetic complexes (Me2Tp=hydrotris(3,5-dimethylpyrazol-1-yl)borate). The association of 1 with in situ prepared [FeII(bik)2(MeCN)2](OTf)2 (bik=bis(1-methylimidazol-2-yl)ketone) leads to a molecular square of formula {[CoIII{(Me2Tp)}(CN)3]2[FeII(bik)2]2}(OTf)2 ⋅ 4MeCN ⋅ 2H2O ( 2 ), whereas the self-assembly of 1 with preformed cluster [CoII2(OH2)(piv)4(Hpiv)4] in MeCN leads to the two-dimensional network of formula {[CoII2(piv)3]2[CoIII(Me2Tp)(CN)3]2 ⋅ 2CH3CN} ( 3 ). These compounds were structurally characterized via single crystal X-ray analysis and their spectroscopic (FTIR, UV-Vis and 59Co NMR) properties and magnetic behaviours were also investigated. Bulk magnetic susceptibility measurements reveal that 1 is diamagnetic and 3 is paramagnetic throughout the explored temperature range, whereas 2 exhibits sharp spin transition centered at ca. 292 K. Compound 2 also exhibits photomagnetic effects at low temperature, selective light irradiations allowing to promote reversibly and repeatedly low-spin⇔high-spin conversion. Besides, the diamagnetic nature of the Co(III) building block allows us studying these compounds by means of 59Co NMR spectroscopy. Herein, a 59Co chemical shift has been used as a magnetic probe to corroborate experimental magnetic data obtained from bulk magnetic susceptibility measurements. An influence of the magnetic state of the neighbouring atoms is observed on the 59Co NMR signals. Moreover, for the very first time, 59Co NMR technique has been successfully introduced to investigate molecular materials with distinct magnetic properties.  相似文献   

19.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

20.
A novel tetraoxolene‐bridged Fe two‐dimensional honeycomb layered compound, (NPr4)2[Fe2(Cl2An)3] ?2 (acetone)?H2O ( 1 ), where Cl2Ann?=2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinonate and NPr4+=tetrapropylammonium cation, has been synthesized. 1 revealed a thermally induced valence tautomeric transition at T1/2=236 K (cooling)/237 K (heating) between Fem+ (m=2 or 3) and Cl2Ann? (n=2 or 3) that induced valence modulations between [FeIIHSFeIIIHS(Cl2An2?)2(Cl2An.3?)]2? at T>T1/2 and [FeIIIHSFeIIIHS(Cl2An2?)(Cl2An.3?)2]2? at T<T1/2. Even in a two‐dimensional network structure, the low‐temperature phase [FeIIIHSFeIIIHS(Cl2An2?)(Cl2An.3?)2]2? valence set can be regarded as a magnetic chain‐knit network, where ferrimagnetic Δ and Λ chains of [FeIIIHS(Cl2An.3?)] are alternately linked by the diamagnetic Cl2An2?. This results in a slow magnetization behavior attributed to the structure acting as a single‐chain magnet at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号