首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of Ni‐catalyzed C?N cross‐couplings of sulfonamides with (hetero)aryl chlorides is reported. These transformations, which were previously achievable only with Pd catalysis, are enabled by use of air‐stable ( L )NiCl(o‐tol) pre‐catalysts (L= PhPAd‐DalPhos and PAd2‐DalPhos ), without photocatalysis. The collective scope of (pseudo)halide electrophiles (X=Cl, Br, I, OTs, and OC(O)NEt2) demonstrated herein is unprecedented for any reported catalyst system for sulfonamide C?N cross‐coupling (Pd, Cu, Ni, or other). Preliminary competition experiments and relevant coordination chemistry studies are also presented.  相似文献   

2.
The first nickel‐catalyzed N‐arylation of amides with (hetero)aryl (pseudo)halides is reported, enabled by use of the air‐stable pre‐catalyst (PAd‐DalPhos)Ni(o‐tolyl)Cl ( C1 ). A range of structurally diverse primary amides and lactams were cross‐coupled successfully with activated (hetero)aryl chloride, bromide, triflate, tosylate, mesylate, and sulfamate electrophiles.  相似文献   

3.
The base metal‐catalyzed C?N cross‐coupling of bulky α,α,α‐trisubstituted primary alkylamines with (hetero)aryl electrophiles represents a challenging and under‐developed class of transformations that is of significant potential utility, including in the synthesis of lipophilic active pharmaceutical ingredients. Herein, we report that a new, air‐stable Ni(II) pre‐catalyst incorporating the optimized ancillary ligand PhPAd‐DalPhos enables such transformations of (hetero)aryl chloride, bromide, and tosylate electrophiles to be carried out for the first time with substrate scope rivalling that achieved using state‐of‐the‐art Pd catalysts, including room temperature cross‐couplings of (hetero)aryl chlorides that are unprecedented for any catalyst (Pd, Ni, or other).  相似文献   

4.
Nickel‐catalyzed selective cross‐coupling of aromatic electrophiles (bromides, chlorides, fluorides and methyl ethers) with organolithium reagents is presented. The use of a commercially available nickel N‐heterocyclic carbene (NHC) complex allows the reaction with a variety of (hetero)aryllithium compounds, including those prepared via metal‐halogen exchange or direct metallation, whereas a commercially available electron‐rich nickel‐bisphosphine complex smoothly converts alkyllithium species into the corresponding coupled product. These reactions proceed rapidly (1 h) under mild conditions (room temperature) while avoiding the undesired formation of reduced or homocoupled products.  相似文献   

5.
A nickel‐catalyzed methylation of aryl halides with cheap and readily available CH3I or CD3I is described. The reaction is applicable to a wide range of substrates and allows installation of a CD3 group under mild reaction conditions without deuterium scrambling to other carbon atoms. Initial mechanistic studies on the stoichiometric and catalytic reactions of the isolated [(dppp)Ni(C6H4‐4‐CO2Et)Br] [dppp=1,3‐bis(diphenylphosphanyl)propane] suggest that a Ni0/NiII catalytic cycle is favored.  相似文献   

6.
A redox‐relay migratory hydroarylation of isomeric mixtures of olefins with arylboronic acids catalyzed by nickel complexes bearing diamine ligands is described. A range of structurally diverse 1,1‐diarylalkanes, including those containing a 1,1‐diarylated quaternary carbon, were obtained in excellent yields and with high regioselectivity. Preliminary experimental evidence supports the proposed non‐dissociated chainwalking of aryl‐nickel(II)‐hydride species along the alkyl chain of alkenes before selective reductive elimination at a benzylic position. A catalyst loading as low as 0.5 mol % proved to be sufficient in large‐scale synthesis while retaining high reactivity, highlighting the practical value of this transformation.  相似文献   

7.
A highly regioselective Ni‐catalyzed electrochemical reductive relay cross‐coupling between an aryl halide and an alkyl halide has been developed in an undivided cell. Various functional groups are tolerated under these mild reaction conditions, which provides an alternative approach for the synthesis of 1,1‐diarylalkanes.  相似文献   

8.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.  相似文献   

9.
A palladium‐catalyzed carbonylative coupling of (hetero)aryl boronates or boronic acid salts with carbon monoxide and α‐bromo‐α,α‐difluoroamides and bromo‐α,α‐difluoroesters is described herein. The method is useful for the synthesis of a diverse selection of (hetero)aryl α,α‐difluoro‐β‐ketoamides and α,α‐difluoro‐β‐ketoesters, which are useful building blocks for the generation of functionalized difluoroacylated and difluoroalkyl arenes. The method could be further extended to a one‐pot protocol for the formation of difluoroacetophenones.  相似文献   

10.
Starting from diverse alkene‐tethered aryl iodides and O‐benzoyl‐hydroxylamines, the enantioselective reductive cross‐electrophilic 1,2‐carboamination of unactivated alkenes was achieved using a chiral pyrox/nickel complex as the catalyst. This mild, modular, and practical protocol provides rapid access to a variety of β‐chiral amines with an enantioenriched aryl‐substituted quaternary carbon center in good yields and with excellent enantioselectivities. This process reveals a complementary regioselectivity when compared to Pd and Cu catalysis.  相似文献   

11.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

12.
The CF3 group is an omnipresent motif found in many pharmaceuticals, agrochemicals, catalysts, materials, and industrial chemicals. Despite well‐established trifluoromethylation methodologies, the straightforward and selective introduction of such groups into (hetero)arenes using available and less expensive sources is still a major challenge. In this regard, the selective synthesis of various trifluoromethyl‐substituted (hetero)arenes by palladium‐catalyzed C?H functionalization is herein reported. This novel methodology proceeds under comparably mild reaction conditions with good regio‐ and chemoselectivity. As examples, trifluoromethylations of biologically important molecules, such as melatonin, theophylline, caffeine, and pentoxifylline, are showcased.  相似文献   

13.
The first example of nickel‐catalyzed decarboxylative fluoroalkylation of α,β‐unsaturated carboxylic acids has been developed with commonly available fluoroalkyl halides. This novel transformation has demonstrated broad substrate scope, excellent functional‐group tolerance, mild reaction conditions, and excellent stereoselectivity. Mechanistic investigations indicate that a fluoroalkyl radical is involved in the catalytic cycle.  相似文献   

14.
The development of Ni-catalyzed C−N cross-couplings of sulfonamides with (hetero)aryl chlorides is reported. These transformations, which were previously achievable only with Pd catalysis, are enabled by use of air-stable ( L )NiCl(o-tol) pre-catalysts (L= PhPAd-DalPhos and PAd2-DalPhos ), without photocatalysis. The collective scope of (pseudo)halide electrophiles (X=Cl, Br, I, OTs, and OC(O)NEt2) demonstrated herein is unprecedented for any reported catalyst system for sulfonamide C−N cross-coupling (Pd, Cu, Ni, or other). Preliminary competition experiments and relevant coordination chemistry studies are also presented.  相似文献   

15.
Photoarylation of iodocarboranes with unactivated arenes/heteroarenes at room temperature has been achieved, for the first time, thus leading to the facile synthesis of a large variety of cage carbon mono(hetero)arylated and di(hetero)arylated o-carboranes. This work represents a clean, efficient, transition-metal-free, and cheap synthesis of functionalized carboranes, which has significant advantages over the known methods.  相似文献   

16.
A nickel‐catalyzed reductive arylation of ambiphilic α‐bromoalkyl boronic esters with aryl halides is described. This platform provides an unrecognized opportunity to promote the catalytic umpolung reactivity of ambiphilic reagents with aryl halides, thus unlocking a new cross‐coupling strategy that complements existing methods for the preparation of densely functionalized alkyl‐substituted organometallic reagents from simple and readily accessible precursors.  相似文献   

17.
Along with amide bond formation, Suzuki cross‐coupling, and reductive amination, the Buchwald–Hartwig–Ullmann‐type amination of aryl halides stands as one of the most employed reactions in modern medicinal chemistry. The work herein demonstrates the potential of utilizing electrochemistry to provide a complementary avenue to access such critical bonds using an inexpensive nickel catalyst under mild reaction conditions. Of note is the scalability, functional‐group tolerance, rapid rate, and the ability to employ a variety of aryl donors (Ar−Cl, Ar−Br, Ar−I, Ar−OTf), amine types (primary and secondary), and even alternative X−H donors (alcohols and amides).  相似文献   

18.
A Pd‐catalyzed Suzuki cross‐coupling of arylboronic acids with Yagupolskii–Umemoto reagents was explored. In contrary to trifluoromethylations, the Pd‐catalyzed reaction of R?B(OH)2 and [Ar2SCF3]+[OTf]? provided the arylation products (R?Ar) in good to high yields. The reaction confirms that the S?Ar bonds of [Ar2SCF3]+[OTf]? can be readily cleaved in the presence of Pd complexes. The relatively electron‐poor aryl groups of asymmetric [Ar1Ar2SCF3]+[OTf]? salts are more favorably transferred compared to the electron‐rich ones. This reaction represents the first report of utilization of [Ar2SCF3]+[OTf]? as arylation reagents in organic synthesis.  相似文献   

19.
The synthesis and structure of the first 1,2‐bis(NHSi)‐substituted ortho‐carborane [(LSi:)C]2B10H10 (termed SiCCSi) is reported (NHSi=N‐heterocyclic silylene; L=PhC(NtBu)2). Its suitability to serve as a reliable bis(silylene) chelating ligand for transition metals is demonstrated by the formation of [SiCCSi]NiBr2 and [SiCCSi]Ni(CO)2 complexes. The CO stretching vibration modes of the latter indicate that the SiII atoms in the SiCCSi ligand are even stronger σ donors than the PIII atoms in phosphines and CII atoms in N‐heterocyclic carbene (NHC) ligands. Moreover, the strong donor character of the [SiCCSi] ligand enables [SiCCSi]NiBr2 to act as an outstanding precatalyst (0.5 mol % loading) in the catalytic aminations of arenes, surpassing the activity of previously known molecular Ni‐based precatalysts (1–10 mol %).  相似文献   

20.
Recent studies have demonstrated that amides can be used in nickel‐catalyzed reactions that lead to cleavage of the amide C?N bond, with formation of a C?C or C?heteroatom bond. However, the general scope of these methodologies has been restricted to amides where the carbonyl is directly attached to an arene or heteroarene. We now report the nickel‐catalyzed esterification of amides derived from aliphatic carboxylic acids. The transformation requires only a slight excess of the alcohol nucleophile and is tolerant of heterocycles, substrates with epimerizable stereocenters, and sterically congested coupling partners. Moreover, a series of amide competition experiments establish selectivity principles that will aid future synthetic design. These studies overcome a critical limitation of current Ni‐catalyzed amide couplings and are expected to further stimulate the use of amides as synthetic building blocks in C?N bond cleavage processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号