首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemphyschem》2003,4(4):349-358
The light generating mechanism of a series of light emitting diodes with electron donor–bridge–acceptor systems (D–b–A) as the emitting species was examined by constructing model diodes based on small organic molecules (OLEDs) as well as on molecularly doped electroactive (poly‐N‐vinylcarbazole, PVK) and insulating (polystyrene, PS) polymers (PLEDs). The direct electrogeneration of an intramolecular charge‐transfer (CT) fluorescence of the donor–bridge–acceptor systems occurred readily in OLED devices with a D–b–A system as the emissive layer. In diodes with PS as the host matrix, hole‐injection and electron‐injection occurred directly in the D–b–A molecules residing close to the anode and the cathode, respectively. In the PVK diodes, hole‐injection occurred primarily into PVK and the positive charge carrier was subsequently trapped on the D–b–A molecule, whereas electron‐injection at the cathode side occurred directly into the D–b–A molecules. Charge‐hopping between neighboring molecules then occurred until a hole and electron resided on the same molecule, which is equivalent to the formation of the CT excited state, and which finally relaxed by intramolecular charge recombination under the emission of CT fluorescence.  相似文献   

2.
Metal–organic framework cathodes usually exhibit low capacity and poor electrochemical performance for Li‐ion storage owing to intrinsic low conductivity and inferior redox activity. Now a redox‐active 2D copper–benzoquinoid (Cu‐THQ) MOF has been synthesized by a simple solvothermal method. The abundant porosity and intrinsic redox character endow the 2D Cu‐THQ MOF with promising electrochemical activity. Superior performance is achieved as a Li‐ion battery cathode with a high reversible capacity (387 mA h g?1), large specific energy density (775 Wh kg?1), and good cycling stability. The reaction mechanism is unveiled by comprehensive spectroscopic techniques: a three‐electron redox reaction per coordination unit and one‐electron redox reaction per copper ion mechanism is demonstrated. This elucidatory understanding sheds new light on future rational design of high‐performance MOF‐based cathode materials for efficient energy storage and conversion.  相似文献   

3.
A Mott‐type semiconductor based on a compactly fused and partially oxidized electron donor–acceptor (D–A) molecule was recently prepared and identified to exhibit a large room‐temperature conductivity of 2 S cm?1. In a marked contrast to the organic conductors characterized by relatively well decoupled and segregated uniform stacks of D and A moieties, the formally half‐oxidized tetrathiafulvalene donors of the actual compound are organized in columnar π stacks only, whereby the coplanar electron‐acceptor units, namely benzothiadiazole, are closely annulated along their ridges. Herein, we present a theoretical study that explores the electronic structure of this novel type of organic semiconductor. The highly symmetric‐solid state material behaves as a one‐dimensional electronic system with strong antiferromagnetic interactions (coupling constant>200 cm?1). The unique shape and local dipole of this redox‐active fused electron D–A molecule lays the basis for further investigations of the collective electronic structure, mainly in the function of different counterions embedded in the crystalline lattice.  相似文献   

4.
A three‐dimensional (3D) hierarchical MOF‐on‐reduced graphene oxide (MOF‐on‐rGO) compartment was successfully synthesized through an in situ reduced and combined process. The unique properties of the MOF‐on‐rGO compartment combining the polarity and porous features of MOFs with the high conductivity of rGO make it an ideal candidate as a sulfur host in lithium–sulfur (Li‐S) batteries. A high initial discharge capacity of 1250 mAh g?1 at a current density of 0.1 C (1.0 C=1675 mAh g?1) was reached using the MOF‐on‐rGO based electrode. At the rate of 1.0 C, a high specific capacity of 601 mAh g?1 was still maintained after 400 discharge–charge cycles, which could be ascribed to the synergistic effect between MOFs and rGO. Both the hierarchical structures of rGO and the polar pore environment of MOF retard the diffusion and migration of soluble polysulfide, contributing to a stable cycling performance. Moreover, the spongy‐layered rGO can buffer the volume expansion and contraction changes, thus supplying stable structures for Li‐S batteries.  相似文献   

5.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

6.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   

7.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

8.
In this study a novel symmetrical metal‐free organic dye for applications in dye‐sensitized solar cells (DSSCs) was synthesized. This dye ( D ) was designed with A–π–D–π–A framework and synthesized with 9,9‐dioctylfluorene as electron donor, phenylene as π‐spacer and cyanoacetic acid as electron acceptor. The chemical structure of product was determined using UV‐Vis, FT‐IR, CNMR, HNMR spectroscopy techniques. The presence of a phenylene π‐bridge between the donor and the acceptor units and the di‐anchoring moieties in this structure led to enhancement of conjugation lengths and molar extinction coefficient (ε) that is promising for further improvement of the conversion efficiency of DSSCs.  相似文献   

9.
A facile synthesis of partially hydroxy‐modified MOF‐5 and its improved H2‐adsorption capacity by lithium doping are reported. The reaction of Zn(NO3)2 ? 6 H2O with a mixture of terephthalic acid (H2BDC) and 2‐hydroxyterephthalic acid (H2BDC‐OH) in DMF gave hydroxy‐modified MOF‐5 (MOF‐5‐OH‐x), in which the molar fraction (x) of BDC‐OH2? was up to 0.54 of the whole ligand. The MOF‐5‐OH‐x frameworks had high BET surface areas (about 3300 m2 g?1), which were comparable to that of MOF‐5. We suggest that the MOF‐5‐OH‐x frameworks are formed by the secondary growth of BDC2?‐rich MOF‐5 seed crystals, which are nucleated during the early stage of the reaction. Subsequent Li doping into MOF‐5‐OH‐x results in increased H2 uptake at 77 K and 0.1 MPa from 1.23 to 1.39 wt. % and an increased isosteric heat of H2 adsorption from 5.1–4.2 kJ mol?1 to 5.5–4.4 kJ mol?1.  相似文献   

10.
We report the synthesis of two [2]catenane‐containing struts that are composed of a tetracationic cyclophane (TC4+) encircling a 1,5‐dioxynaphthalene (DNP)‐based crown ether, which bears two terphenylene arms. The TC4+ rings comprise either 1) two bipyridinium (BIPY2+) units or 2) a BIPY2+ and a diazapyrenium (DAP2+) unit. These degenerate and nondegenerate catenanes were reacted in the presence of Cu(NO3)2?2.5 H2O to yield Cu‐paddlewheel‐based MOF‐1050 and MOF‐1051. The solid‐state structures of these MOFs reveal that the metal clusters serve to join the heptaphenylene struts into grid‐like 2D networks. These 2D sheets are then held together by infinite donor–acceptor stacks involving the [2]catenanes to produce interpenetrated 3D architectures. As a consequence of the planar chirality associated with both the DNP and hydroquinone (HQ) units present in the crown ether, each catenane can exist as four stereoisomers. In the case of the nondegenerate (bistable) catenane, the situation is further complicated by the presence of translational isomers. Upon crystallization, however, only two of the four possible stereoisomers—namely, the enantiomeric RR and SS forms—are observed in the crystals. An additional element of co‐conformational selectivity is present in MOF‐1051 as a consequence of the substitution of one of the BIPY2+ units by a DAP2+ unit: only the translational isomer in which the DAP2+ unit is encircled by the crown ether is observed. The overall topologies of MOF‐1050 and MOF‐1051, and the selective formation of stereoisomers and translational isomers during the kinetically driven crystallization, provide evidence that weak noncovalent bonding interactions play a significant role in the assembly of these extended (super)structures.  相似文献   

11.
We demonstrate a redox-active, crystalline donor–acceptor (D-A) assembly in which the electron transfer (ET) process can be reversibly switched. This ET process, induced by a guest-responsive structural transformation at room temperature, is realized in a porous, metal–organic framework (MOF), having anthracene (D)–naphthalenediimide (A) as struts. A control MOF structure obtained by a solvent-assisted linker exchange (SALE) method, replacing an acceptor strut with a neutral one, supported the switchable electronic states in the D-A MOF. Combined investigations with X-ray diffraction, spectroscopy, and theoretical analyses revealed the dynamic metal paddle-wheel node as a critical unit for controlling structural flexibility and the corresponding unprecedented ET process.  相似文献   

12.
Many optoelectronic organic materials are based on donor–acceptor (D–A) systems with heteroatom‐containing electron donors. Herein, we introduce a new molecular design for all‐carbon curved oligoparaphenylenes as donors, which results in the generation of unique shape‐persistent D–A macrocycles. Two types of acceptor‐inserted cycloparaphenylenes were synthesized. These macrocycles display positive solvatofluorochromic properties owing to their D–A characteristics, which were confirmed by theoretical and electrochemical studies.  相似文献   

13.
Molecular organization of donor and acceptor chromophores in self‐assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light‐harvesting systems. With this in mind, a redox‐active porous interpenetrated metal–organic framework (MOF), {[Cd(bpdc)(bpNDI)] ? 4.5 H2O ? DMF}n ( 1 ) has been constructed from a mixed chromophoric system. The μ‐oxo‐bridged secondary building unit, {Cd2(μ‐OCO)2}, guides the parallel alignment of bpNDI (N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2=4,4′‐biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter‐net electron transfer. Encapsulation of electron‐donating aromatic molecules in the electron‐deficient channels of 1 leads to a perfect donor–acceptor co‐facial organization, resulting in long‐lived charge‐separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.  相似文献   

14.
Molecular components of opposite character are often incorporated within a single system, with a rigid core and flexible side arms being a common design choice. Herein, molecule L has been designed and prepared featuring the reverse design, with rigid side arms (arylalkynyl) serving to calibrate the mobility of the flexible polyether links in the core. Crystallization of this molecule with PbII ions led to a dynamic metal–organic framework (MOF) system that not only exhibits dramatic, reversible single‐crystal‐to‐single‐crystal transformations, but combines distinct donor and acceptor characteristics, allowing for substantial uptake of PdCl2 and colorimetric sensing of H2S in water.  相似文献   

15.
Supramolecular capsules were assembled by neutral halogen bonding (XB) and studied in the solid state, in solution, and in the gas phase. The geometry of the highly organized capsules is shown by an X‐ray crystal structure which features the assembly of two XB hemispheres, geometrically rigidified by H‐bonding to eight MeOH molecules and encapsulation of two benzene guests. To enhance capsular association strength, tuning the XB donor is more efficient than tuning the XB acceptor, due to desolvation penalties in protic solvents, as shown for a tetraquinuclidine XB acceptor hemisphere. With a tetra(iodoethynyl) XB donor and a tetralutidine XB acceptor, the association in deuterated benzene/acetone/methanol 70:30:1 at 283 K reaches K a=(2.11±0.39)×105 m −1G =−6.9±0.1 kcal mol−1). The stability of the XB capsules in the gas phase was confirmed by electrospray ionization mass spectrometry (ESI‐MS). A new guest binding site was uncovered within the elongated iodoethynyl capsule.  相似文献   

16.
Two D–π‐A′–A regioisomers (A‐IDT‐D and D‐IDT‐A) featuring 4,4′‐di‐p‐tolyl‐4 H‐indeno[1,2‐b]‐thiophene as a π linker (π) between the diarylamino donor (D) and the pyrimidine–cyanoacrylic acid acceptor (A′–A) have been successfully synthesized and characterized as efficient sensitizers for the dye‐sensitized solar cells (DSSCs). The different arrangements of the D and A′–A blocks on the unsymmetrical indenothiophene (IDT) core render the dipole of IDT being along (A‐IDT‐D) or opposite (D‐IDT‐A) to the direction of intramolecular (donor‐to‐acceptor) charge transfer, and thus induce variations in the physical properties. The experimental observations correlated well with the theoretical analyses, clearly revealing the trade‐off between the molar extinction coefficient (ε) and the S0→S1 transition energy. As a result, a superior ε value was observed for D‐IDT‐A, whereas a bathochromic shift in the absorption occurred in A‐IDT‐D. The larger ε value of D‐IDT‐A together with its more favorable energy level relative to TiO2 led to a higher power conversion efficiency of 7.41 % for the D‐IDT‐A‐based DSSC, retaining approximately 95 % of the N719‐based DSSC efficiency. This work manifests the clear structure–property relationship for the case of donor and acceptor components being connected by an unsymmetrical π linker and provides insights for molecular engineering of organic sensitizers.  相似文献   

17.
A series of ketocyanine derivatives possessing bis(diarylamino)fluorenyl donors and variable acceptors installed at the bridging carbon atom were synthesized to investigate how the electronic structure of the dye can be systemically tuned through stabilization of the cyanine‐like character of the donor by increasing the acceptor strength. Analysis of the 1H NMR spectra indicates that the “charge‐separated” species dominates in these dyes, given that carbons possessing a positive or negative charge in the resonance structures of this state purposefully shift downfield or upfield, respectively, depending on the strength of the acceptor moiety. In DAA‐Fl‐PI, the acceptor strength and the gain of acceptor aromaticity indicates a predisposition of the separated state, indicated by asymmetry in the 1H NMR spectrum, as well as uneven distribution of the HOMO on the fluorenyl donor.  相似文献   

18.
Photoconductivity is a characteristic property of semi‐conductors. Herein, we present a photo‐conducting crystalline metal–organic framework (MOF) thin film with an on–off photocurrent ratio of two orders of magnitude. These oriented, surface‐mounted MOF thin films (SURMOFs), contain porphyrin in the framework backbone and C60 guests, loaded in the pores using a layer‐by‐layer process. By comparison with results obtained for reference MOF structures and based on DFT calculations, we conclude that donor–acceptor interactions between the porphyrin of the host MOF and the C60 guests give rise to a rapid charge separation. Subsequently, holes and electrons are transported through separate channels formed by porphyrin and by C60, respectively. The ability to tune the properties and energy levels of the porphyrin and fullerene, along with the controlled organization of donor–acceptor pairs in this regular framework offers potential to increase the photoconduction on–off ratio.  相似文献   

19.
meso‐Tritolylcorrole‐functionalized single‐walled carbon nanotubes (TTC‐SWNT) donor‐acceptor (D–A) heterojunction nanocomposite film was fabricated on a polycarbonate membrane through filtration and non‐covalent functionalization, providing an excellent sensing platform with low‐cost, high flexibility and good gas accessibility. The TTC‐SWNTs nanocomposite displays a fast and sensitive response to nitrogen dioxide with a limit of detection of 10 ppb (S/N=3). The sensing response was significantly amplified compared to the unmodified one, which was ascribed to a D–A heterojunction at the interface between electron donor TTC and electron acceptor SWNTs. This study provides a simple route to fabricate low‐cost and highly sensitive donor‐acceptor nanocomposite‐based gas sensors.  相似文献   

20.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号