首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The divergent behavior of two homologue allenals, namely, 2‐(buta‐2,3‐dienyloxy)‐ and 2‐(propa‐1,2‐dienyloxy)benzaldehydes, as cyclization substrates is described. 2‐(Buta‐2,3‐dienyloxy)benzaldehydes suffers a formal allenic carbocyclization reaction to afford chromenes, whereas 2‐(propa‐1,2‐dienyloxy)benzaldehydes react to yield chromones. The formation of chromenes is strictly a formal hydroarylation process divided into two parts, namely, allenic Claisen‐type rearrangement and oxycyclization. An unknown N‐heterocyclic carbene (NHC)‐catalyzed allenic hydroacylation reaction must be invoked to account for the preparation of chromones. ortho‐Allenylbenzaldehydes bearing either electron‐donating substituents or electron‐withdrawing substituents worked well to afford both the hydroarylation and hydroacylation products. This unexpected difference in reactivity can be rationalized by means of density functional theory calculations.  相似文献   

2.
A RhIII‐catalyzed direct ortho‐C?H amidation/amination of benzoic acids with N‐chlorocarbamates/N‐chloromorpholines was achieved, giving anthranilic acids in up to 85 % yields with excellent ortho‐selectivity and functional‐group tolerance. Successful benzoic acid aminations were achieved with carbamates bearing various amide groups including NHCO2Me, NHCbz, and NHTroc (Cbz=carbobenzyloxy; Troc=trichloroethylchloroformate), as well as secondary amines, such as morpholines, piperizines, and piperidines, furnishing highly functionalized anthranilic acids. A stoichiometric reaction of a cyclometallated rhodium(III) complex of benzo[h]quinoline with a silver salt of N‐chlorocarbamate afforded an amido–rhodium(III) complex, which was isolated and structurally characterized by X‐ray crystallography. This finding confirmed that the C?N bond formation results from the cross‐coupling of N‐chlorocarbamate with the aryl–rhodium(III) complex. Yet, the mechanistic details regarding the C?N bond formation remain unclear; pathways involving 1,2‐aryl migration and rhodium(V)– nitrene are plausible.  相似文献   

3.
In the presence of catalytic [{IrCp*Cl2}2] and Ag2CO3, Li2CO3 as the base, and acetone as the solvent, benzoic acids react with arenediazonium salts to give the corresponding diaryl‐2‐carboxylates under mild conditions. This C? H arylation process is generally applicable to diversely substituted substrates, ranging from extremely electron‐rich to electron‐poor derivatives. The carboxylate directing group is widely available and can be removed tracelessly or employed for further derivatization. Orthogonality to halide‐based cross‐couplings is achieved by the use of diazonium salts, which can be coupled even in the presence of iodo substituents.  相似文献   

4.
Mixtures of [{PCy2(o‐biphenyl)}AuCl] and AgSbF6 catalyze the tandem cycloaddition/hydroarylation of 7‐aryl‐1,6‐enynes with electron‐rich arenes to form 6,6‐diarylbicyclo[3.2.0]heptanes in good yield under mild conditions. Experimental observations point to a mechanism involving gold‐catalyzed cycloaddition followed by silver‐catalyzed hydroarylation of a bicyclo[3.2.0]hept‐1(7)‐ene intermediate.  相似文献   

5.
A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross‐coupling between alkyl‐carboxylic acids and boronic acids is described. This Ni‐catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox‐active ester derivatives, specifically N‐hydroxy‐tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2?6 H2O—$9.5 mol?1, Et3N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption.  相似文献   

6.
Linear and hyperbranched poly(ether‐ketone)s (PEKs) containing flexible oxyethylene spacers grafted multiwalled carbon nanotube (PEK‐g‐MWNT) nanocomposites were prepared by direct Friedel‐Crafts acylation as the polymer forming and grafting reaction. To achieve the composites, in situ polycondensations of AB monomers 3‐(2‐phenoxyethoxy)benzoic acid (3‐PEBA) and 4‐(2‐phenoxyethoxy)benzoic acid (4‐PEBA), and AB2 monomer 3,5‐bis(2‐phenoxyethoxy)benzoic acid (3,5‐BPEBA) were carried out in the presence of multiwalled carbon nanotubes (MWNTs). The reaction conditions, polyphosphoric acid (PPA) with additional phosphorous phentoxide (P2O5) in the temperature range of 110–120 °C, were previously optimized. The conditions were used as the polymerization and grafting medium that were indeed benign not to damage MWNTs but strong enough to promote the covalent attachment of PEKs onto the surface of the electron‐deficient MWNTs. From scanning electron microscopy (SEM) and transmission electron microscopy studies, the polymers were uniformly grafted onto the MWNTs. The resultant nanocomposites are soluble in most strong acids such as trifluoroacetic acid, methanesulfonic acid, and sulfuric acid. Both isothermal and dynamic TGA studies in air showed that nanocomposites displayed improved thermo‐oxidative stability when compared with those of corresponding PEK homopolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3471–3481, 2008  相似文献   

7.
The cyanation of arylboronic acids by using acetonitrile as the “CN” source has been achieved under a Cu(cat.)/TEMPO system (TEMPO=2,2,6,6‐tetramethylpiperidine N‐oxide). The broad substrate scope includes a variety of electron‐rich and electron‐poor arylboronic acids, which react well to give the cyanated products in high to excellent yields. Mechanistic studies reveal that TEMPO?CH2CN, generated in situ, is an active cyanating reagent, and shows high reactivity for the formation of the CN? moiety. Moreover, TEMPO acts as a cheap oxidant to enable the reaction to be catalytic in copper.  相似文献   

8.
New micelle‐like organic supports for single site catalysts based on the self‐assembly of polystyrene‐b‐poly(4‐vinylbenzoic acid) block copolymers have been designed. These block copolymers were synthesized by sequential atom transfer radical polymerization (ATRP) of styrene and methyl 4‐vinylbenzoate, followed by hydrolysis. As evidenced by dynamic light scattering, self‐assembly in toluene that is a selective solvent of polystyrene, induced the formation of micelle‐like nanoparticles composed of a poly(4‐vinylbenzoic acid) core and a polystyrene corona. Further addition of trimethylaluminium (TMA) afforded in situ MAO‐like species by diffusion of TMA into the core of the micelles and its subsequent reaction with the benzoic acid groups. Such reactive micelles then served as nanoreactors, MAO‐like species being efficient activators of 2,6‐bis[1‐{(2,6‐diisopropylphenyl)imino}ethyl]pyridinyl iron toward ethylene polymerization. These new micelle‐like organic supports enabled the production of polyethylene beads with a spherical morphology and a high bulk density through homogeneous‐like catalysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 197–209, 2009  相似文献   

9.
PtCl2/AgOTf-catalyzed hydroarylation of ethyl propiolate proceeded effectively to give ethyl (2Z)-cinnamate derivatives in good to high yields, without the formation of diethyl (1E,3Z)-4-arylbuta-1,3-diene-1,3-dicarboxylates that was observed in Pd(OAc)2-catalyzed reaction. Especially, PtCl2/AgOTf-catalyzed hydroarylation of propiolic acids proceeded effectively to give (2Z)-cinnamic acids exclusively.  相似文献   

10.
A variety of N‐alkyl‐α,α‐dichloroaldimines were vinylated by terminal acetylenes in the presence of Lewis acids such as In(OTf)3 or BF3 ? OEt2 and hexafluoroisopropanol (HFIP) as an additive. The reaction proceeds at ambient temperature and leads to geometrically pure allylic β,β‐dichloroamines. This approach is complementary to previously reported transition‐metal‐catalyzed vinyl‐transfer methods, which are not applicable to aliphatic imines and are restricted to imines that contain an electron‐withdrawing nitrogen substituent. In the present approach, terminal alkynes were used as a source of the vinyl residue, and the N‐alkyl moiety of the imine acts as a sacrificial hydrogen donor. The additional advantage of this methodology is the fact that no external toxic or hazardous reducing agents or molecular hydrogen has to be used. This new methodology nicely combines a C(sp2)? C(sp) bond formation, hydride transfer, and an unusual cleavage of an unactivated C? N bond, thereby giving rise to functionalized primary allylic amines. A detailed experimental study supported by DFT calculations of the mechanism has been done.  相似文献   

11.
The transition‐metal‐catalyzed selective hydroarylation of unsymmetrical alkynes represents the state‐of‐art in organic chemistry, and still mainly relies on the use of precious late‐transition‐metal catalysts. Reported herein is an unprecedented MnI‐catalyzed hydroarylation of unsymmetrical 1,3‐diyne alcohols with commercially available arylboronic acids with predictive selectivity. This method addresses the challenges in regio‐, stereo‐, and chemoselectivity. It offers a general, convenient and practical strategy for the modular synthesis of multisubstituted Z‐configurated conjugated enynes. This protocol is distinguished by its operational simplicity, complete selectivity, excellent functional‐group compatibility, and gram‐scale potential. A dimeric MnI species, Mn2(CO)8Br2, was proven to be a much more efficient catalyst precursor than Mn(CO)5Br.  相似文献   

12.
Acyl iodides react with alkyl, alkenyl, and aralkyl esters derived from saturated, unsaturated, and aromatic mono- and dicarboxylic acids in the absence of a catalyst. The reaction involves cleavage of the OR bond and formation of organic iodide RI (including CH2=CHI) and one or two symmetric carboxylic acid anhydrides. Phenyl acetate reacts with benzoyl iodide to give acetyl iodide and phenyl benzoate as a result of cleavage of the (O=)C–O bond. The reaction of diethyl fumarate with acetyl iodide is accompanied by cistrans isomerization to afford maleic anhydride. In the reactions of acetyl iodide with diethyl oxalate and diethyl malonate, CO and CO2 and CO2 and polyketene are formed, respectively, in addition to ethyl iodide and acetic anhydride. Ethyl esters of strong organic acids, e.g., ethyl trihaloacetates, failed to react with acyl iodides under analogous conditions.  相似文献   

13.
An iridium(I) catalyst system, modified with the wide‐bite‐angle and electron‐deficient bisphosphine dFppb (1,4‐bis(di(pentafluorophenyl)phosphino)butane) promotes highly branch‐selective hydroarylation reactions between diverse acetanilides and aryl‐ or alkyl‐substituted alkenes. This provides direct and ortho‐selective access to synthetically challenging anilines, and addresses long‐standing issues associated with related Friedel–Crafts alkylations.  相似文献   

14.
This paper describes an efficient approach for the synthesis of a new series of 6‐[3‐alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl]nicotinic acids (where alkyl = CH3; aryl = Ph, 4‐OCH3Ph, 4,4′‐BiPh; and heteroaryl = 2‐Furyl) from the hydrolysis reaction of alkyl(aryl/heteroaryl)substituted 2‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐pyrazol‐1‐yl)‐5‐(5‐trifluoromethyl‐5‐hydroxy‐4,5‐dihydro‐1H‐1‐carbonylpyrazol‐1‐yl)pyridines, under basic conditions and at 70–95% yields. In a subsequent step, the esterification reaction of pyrazolyl‐nicotinic acids done in thionyl chloride and methanol led to the isolation of a series of methyl 6‐[alkyl(aryl/heteroaryl)‐5‐trifluoromethyl‐1H‐pyrazol‐1‐yl] nicotinates as stable hydrochloride salts at 64–84% yields, which could be easily converted to hydrazides to give new oxadiazolyl‐pyrazolyl‐pyridine tricyclic scaffolds at good yields from a [4 + 1] cyclocondensation reaction with 1,1,1‐triethoxyethane and 1‐(triethoxymethyl)benzene as the reagent/solvent.  相似文献   

15.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

16.
An iron‐catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis‐1,2‐diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron‐catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.  相似文献   

17.
The aldol‐crotonic condensation reactions of N‐alkyl‐ and NH‐piperidin‐4‐one derivatives with (hetero)aromatic aldehydes promoted by Lewis acids or bases were examined. This comparative study has revealed three effective catalytic systems based on Lewis acids, i.e., LiClO4 and MgBr2 (in the presence of tertiary amine), and BF3⋅Et2O, for the synthesis of N‐alkyl‐substituted 3,5‐bis(heteroarylidene)piperidin‐4‐ones, including those bearing acid‐ or base‐labile groups both in the (hetero)aromatic groups and in the alkyl substituent at the N‐atom. The highest reaction rate was observed for LiClO4‐mediated synthesis. Both MgBr2‐ and LiClO4‐mediated syntheses were inefficient in the case of NH‐piperidin‐4‐one, while BF3⋅Et2O provided the final compounds in high yields. This catalyst is especially advantageous as it allows simultaneous condensation and deprotection in the case of O‐protected piperidin‐4‐one.  相似文献   

18.
Tetrachlorosilane reacted with carboxylic acids RCOOH (R = Me, Bu, t-Bu) to give the corresponding acid chlorides RCOCl in 75–95% yield. The reactions of SiCl4 with trichloroacetic and 2-fluorobenzoic acids (R = Cl3C, 2-FC6H4) occurred more difficultly, presumably for steric reasons, and the yields of the corresponding acid chlorides were 11 and 22%, respectively. Tetrachlorosilane failed to react with stearic acid under analogous conditions. Products of the reactions of SiCl4 with chloroacetic and benzoic acids RCOOH (R = ClCH2, Ph) were tetraacyloxysilanes Si(OCOR)4, and tetrakis(chloroacetoxy)silane was formed in almost quantitative yield. The reaction of SiCl4 with glutaric acid led to the formation of a rubber-like polymeric material with the composition C5H6Cl2O4Si. The effect of pKa values of carboxylic acids on the direction and mechanism of the examined reaction is discussed.  相似文献   

19.
A highly regioselective ortho‐benzoxylation of N‐alkyl benzamides with aromatic acids in the presence of [{RuCl2(p‐cymene)}2], AgSbF6, and (NH4)2S2O8 in 1,2‐dichloroethane at 100 °C for 24 h affording ortho‐benzoxylated N‐alkyl benzamides by C?H bond activation is described. Further, Ru‐catalyzed alkenylation is done at the ortho C?H bond of benzoxylated N‐alkyl benzamides with alkenes in water solvent. Subsequently, the benzoxyl moiety of N‐alkyl benzamides was converted into a hydroxyl group in the presence of base or acid. A possible reaction mechanism was proposed to account for the present coupling reaction.  相似文献   

20.
Three novel dyes of JJ1 , JJ2 , and JJ6 featured zinc porphyrin as a basic core structure; N, N‐alkyl‐4‐(prop‐1‐yn‐1‐yl)aniline as an electron donor linked to meso‐10‐position; 4‐(prop‐1‐yn‐1‐yl)benzoic acid as an electron acceptor linked to meso‐20‐position; and 2,6‐bis(dodecyloxy)phenyl or 2,6‐bis(octyloxy)phenyl respectively linked to meso‐5 and meso‐15‐positions of zinc porphyrin have been synthesized and used for dye‐sensitized solar cells. Porphyrin JJ6 featured the shortest alkyl group (─C4H9) on the donor, whereas JJ2 contained the longest alkyl groups (─C12H25), and JJ1 has a medium length of octyl groups. With these new porphyrin sensitizers, we observed that JJ6 has 7.55% power conversion efficiency under simulated one‐sun illumination (AM 1.5 G, 100 mW/cm2) with JSC = 18.64 mA/cm2, VOC = 0.66 V, and fill factor (FF) = 0.61, which was higher than the other two; JJ1 (7.35%) with JSC = 18.83 mA/cm2, VOC = 0.68 V, and FF = 0.60; and JJ2 (6.33%) with JSC = 15.69 mA/cm2, VOC = 0.62 V, and FF = 0.65. The power conversion efficiency of JJ6 and JJ1 were higher than JJ2 , demonstrating that the lengthy alkyl groups on the aniline cause a decrease in efficiency of the devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号