首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
For the living ring‐opening polymerization (ROP) of epoxy monomers, the catalytic activity of organic superbases, tert‐butylimino‐tris(dimethylamino)phosphorane, 1‐tert‐butyl‐2,2,4,4,4‐pentakis(dimethylamino)‐2Λ5,4Λ5‐catenadi(phosphazene), 2,8,9‐triisobutyl‐2,5,8,9‐tetraaza‐1‐phosphabicyclo[3.3.3]undecane, and 1‐tert‐butyl‐4,4,4‐tris(dimethylamino)‐2,2‐bis[tris(dimethylamino)phosphoranylidenamino]‐2Λ5,4Λ5‐catenadi(phosphazene) (t‐Bu‐P4), was confirmed. Among these superbases, only t‐Bu‐P4 showed catalytic activity for the ROP of 1,2‐butylene oxide (BO) to afford poly(1,2‐butylene oxide) (PBO) with predicted molecular weight and narrow molecular weight distribution. The results of the kinetic, post‐polymerization experiments, and MALDI‐TOF MS measurement revealed that the t‐Bu‐P4‐catalyzed ROP of BO proceeded in a living manner in which the alcohol acted as the initiator. This alcohol/t‐Bu‐P4 system was applicable to the glycidol derivatives, such as benzyl glycidyl ether (BnGE) and t‐butyl glycidyl ether, to afford well‐defined protected polyglycidols. The α‐functionalized polyethers could be obtained using different functionalized initiators, such as 4‐vinylbenzyl alcohol, 5‐hexen‐1‐ol, and 6‐azide‐1‐hexanol. In addition, the well‐defined cyclic‐PBO and PBnGE were successfully synthesized using the combination of t‐Bu‐P4‐catalyzed ROP and click cyclization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Hybrid peptides composed of α‐ and β‐amino acids have recently emerged as new class of peptide foldamers. Comparatively, γ‐ and hybrid γ‐peptides composed of γ4‐amino acids are less studied than their β‐counterparts. However, recent investigations reveal that γ4‐amino acids have a higher propensity to fold into ordered helical structures. As amino acid side‐chain functional groups play a crucial role in the biological context, the objective of this study was to investigate efficient synthesis of γ4‐residues with functional proteinogenic side‐chains and their structural analysis in hybrid‐peptide sequences. Here, the efficient and enantiopure synthesis of various N‐ and C‐terminal free‐γ4‐residues, starting from the benzyl esters (COOBzl) of N‐Cbz‐protected (E)α,β‐unsaturated γ‐amino acids through multiple hydrogenolysis and double‐bond reduction in a single‐pot catalytic hydrogenation is reported. The crystal conformations of eight unprotected γ4‐amino acids (γ4‐Val, γ4‐Leu, γ4‐Ile, γ4‐Thr(OtBu), γ4‐Tyr, γ4‐Asp(OtBu), γ4‐Glu(OtBu), and γ‐Aib) reveals that these amino acids adopted a helix favoring gauche conformations along the central Cγ? Cβ bond. To study the behavior of γ4‐residues with functional side chains in peptide sequences, two short hybrid γ‐peptides P1 (Ac‐Aib‐γ4‐Asn‐Aib‐γ4‐Leu‐Aib‐γ4‐Leu‐CONH2) and P2 (Ac‐Aib‐γ4‐Ser‐Aib‐γ4‐Val‐Aib‐γ4‐Val‐CONH2) were designed, synthesized on solid phase, and their 12‐helical conformation in single crystals were studied. Remarkably, the γ4‐Asn residue in P1 facilitates the tetrameric helical aggregations through interhelical H bonding between the side‐chain amide groups. Furthermore, the hydroxyl side‐chain of γ4‐Ser in P2 is involved in the interhelical H bonding with the backbone amide group. In addition, the analysis of 87 γ4‐residues in peptide single‐crystals reveal that the γ4‐residues in 12‐helices are more ordered as compared with the 10/12‐ and 12/14‐helices.  相似文献   

3.
Multianvil Synthesis, X‐ray Powder Diffraction Analysis, 31P‐MAS‐NMR, and FTIR Spektroscopy as well as Material Properties of γ‐P3N5, a High‐Pressure Polymorph of Binary Phosphorus(V) Nitride, Built up from Distorted PN5 Square Pyramids and PN4 Tetrahedra The high‐pressure phase γ‐P3N5 was synthesized at a pressure of 11 GPa and a temperature of 1500 °C in a multianvil apparatus. Partially crystalline P3N5 has been used as a starting material. The crystal structure was solved by direct methods on the basis of X‐ray powder diffraction data and it was refined by the Rietveld method (Imm2, a = 1287.21(4), b = 261.312(6), c = 440.03(2) pm, Z = 2, Rp = 0.073, wRp = 0.094, RF = 0.048). γ‐phosphorus nitride crystallizes in a three‐dimensional network structure built up from corner sharing PN4 tetrahedra and trans‐edge sharing distorted PN5 square pyramids. In the 31P‐MAS‐NMR spectrum two sharp isotropic resonances with an intensity ratio of 1 : 2.02(5) are observed at —11.95(3) and —101.72(7) ppm, respectively. The IR‐spectroscopic and thermal properties of γ‐P3N5 are described. Measurement of the Vickers hardness resulted in a value of 9.7(21) GPa for sintered polycrystalline γ‐P3N5, which is significantly higher than that for the partially crystalline normal pressure modification of P3N5 (5.1(7) GPa).  相似文献   

4.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

5.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

6.
Chiral 1,3,2‐Oxazaborolidines from the Reaction of Chiral 2,3‐Dihydro‐1H‐1,3,2‐diazaboroles and Diphenylketene Reaction of equimolar amounts of diphenylketene with 1,3‐di‐tert‐butyl‐2‐isobutyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 1 ) regioselectively afforded 1,3,2‐oxazaborolidine ( 2 ). The employment of a series of chiral diazaboroles ( 3a : X = nBu; b: iBu; c: CH2SiMe3; d: NHtBu) led to the formation of the diastereoisomeric oxazaborolidines ( 4a – d ) with diastereomeric excesses de, which increase with the steric demand of X from de = 55 % (X = nBu) to de ≥ 95 % (X = NHtBu). Under comparable conditions the treatment of the enantiomerically pure diazaborole ( 6 ) with the ketene yielded oxazaborolidine ( 7 ) with a de‐value of only 52 %. The new compounds, with exception of 2 and 4d , are thermolabile solids, which were characterized mainly by spectroscopy (1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The X‐ray structure analysis of 2 revealed a slightly puckered five‐membered heterocycle with a long B–O bond.  相似文献   

7.
Ethylene copolymerizations with norbornene (NBE) using half‐titanocenes containing imidazolin‐2‐iminato ligands, Cp′TiCl2[1,3‐R2(CHN)2C?N] [Cp′ = Cp ( 1 ), tBuC5H4 ( 2 ); R = tBu ( a ), 2,6‐iPr2C6H3 ( b )], have been explored in the presence of methylaluminoxane (MAO) cocatalyst. Complex 1a exhibited remarkable catalytic activity with better NBE incorporation, affording high‐molecular‐weight copolymers with uniform molecular weight distributions, whereas the tert‐BuC5H4 analog ( 2a ) showed low activity, and the resultant polymer prepared by the Cp‐2,6‐diisopropylphenyl analog ( 1b ) possessed broad molecular weight distribution. The microstructure analysis of the poly(ethylene‐co‐NBE)s prepared by 1a suggests the formation of random copolymers including two and three NBE repeating units. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2575–2580  相似文献   

8.
The reaction of 2‐methoxybenzyl alcohol with one molar equiv of R2AIX in diethyl ether at 0°C gives [(2‐MeOC6H4CH2‐μ‐O)AlRX]2 ( 1 : R = Et, X = Cl, 2 : R = X = Et). In addition, 2,4‐di‐tert‐butylphenol reacts with iBu3Al affording a four‐coordinated aluminum compound [(μ‐2,4‐tBu2‐C6H4O)Al(iBu)2]2 ( 4 ). Single crystal X‐ray structure analysis of 4 shows a C2h‐symmetry with a planar Al2O2 core. Ring‐opening polymerization (ROP) of caprolactones initiated by 1, 4 and [(μ‐OCH2C6H4OMe)Al(iBu)2]2 ( 3 ) is performed and polyesters with narrow molecular weight distributions were obtained from the “living” ROP of caprolactones. 1H NMR spectroscopic studies of PCL reveal that the initiator of 1 and 3 is through the Al‐OAr function, but the initiator of 4 is through the Al‐ iBu group.  相似文献   

9.
The title compound, [Fe2Cl4O(C7H12N2)4], contains vertex‐sharing distorted tetrahedral [FeOCl3]? and octahedral [FeOCl(HpztBu)4]+ moieties (HpztBu is 5‐tert‐­butyl­pyrazole), linked by a bent oxo bridging ligand. The two FeIII centres are also bridged by intramolecular hydrogen bonds between the pyrazole N—H groups and the O2? and Cl? ligands.  相似文献   

10.
Reaction of the cyclodiphosphazane [(OC4H8N)P(μ‐N‐t‐Bu)2P(HN‐t‐Bu)] ( 1 ) with an equimolar quantity of diisopropyl azodicarboxylate afforded the phosphinimine product [(OC4H8N)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 6 ) having a PIII‐N‐PV skeleton. Similar products [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2Et)NHCO2Et] ( 7 ) and [(CO2i‐Pr)HNN(CO2i‐Pr)](t‐BuN=P(μ‐N‐t‐Bu)2POCH2CMe2CH2O[P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NH(CO2i‐Pr)] ( 8 ) were spectroscopically characterized in the reaction of [(t‐BuNH)P‐N‐t‐Bu]2 ( 2 ) and [(t‐BuNH)P(μ‐N‐t‐Bu)2POCH2CMe2CH2OP(μ‐N‐t‐Bu)2P(NH‐t‐Bu)] ( 3 ) with diethyl‐ and diisopropyl azodicarboxylate, respectively. By contrast, the reaction of [(μ‐t‐BuN)P]2[O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 4 ) and [(C5H10N)P‐μ‐N‐t‐Bu]2 ( 5 ) with diisopropyl azodicarboxylate afforded the mono‐ and bis‐oxidized compounds [(O)P(μ‐N‐t‐Bu)2P][O‐6‐t‐Bu‐4‐Me‐C6H2]2CH2 ( 9 ) and [(C5H10N)(O)P‐μ‐N‐t‐Bu]2 ( 10 ), respectively. Oxidative addition of o‐chloranil to 7 and its DIAD analogue [(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2i‐Pr)NHCO2i‐Pr] ( 11 ) afforded [(C6Cl4‐1, 2‐O2)(t‐BuNH)P(μ‐N‐t‐Bu)2P=N‐t‐Bu)(N(CO2R)NHCO2R] [R = Et ( 12 ) and i‐Pr ( 13 )] containing tetra‐ and pentacoordinate PV atoms in the cyclodiphosphazane ring. The structures of 6 , 9 , 12 and 13 have been confirmed by X‐ray structure determination. For comparison, the X‐ray structure of the double cycloaddition product [(C6Cl4‐1, 2‐O2)(t‐BuNH)PN‐t‐Bu]2 ( 14 ), obtained from the reaction of 2 with two mole equivalents of o‐chloranil is also reported.  相似文献   

11.
The synthesis of η6‐(4a‐methyl‐1,2,3,4‐tetrahydro‐4aH‐carbazole)tricarbonylchromium ( 3 ) is described, and its reactivity with organolithium reagents have been analysed. The addition of RLi (R= H, Me, n‐Bu, tert‐Bu) to 3 affords the corresponding endo/exo tricarbonylchromium complexes of cis‐4a‐methyl‐9a‐substituted‐1,2,3,4‐tetrahydro‐4aH‐carbazole, which permit the consideration of the stereoelectronic behaviour of the tricarbonylchromium group on 4a‐methyl and the 9a substituent or on the methylenes of the cyclohexene moiety in the complexes.  相似文献   

12.
The hydride complex K[(η5‐C5H5)Mn(CO)2H] reacted with a range of dihalo(organyl)boranes X2BR (X = Cl, Br; R = tBu,Mes, Ferrocenyl) to give the corresponding borane complexes[(η5‐C5H5)Mn(CO)2(HB(X)R)]., The presence of a hydride in bridging position between manganese and boron was deduced from 11B decoupled 1H NMR spectra. Additionally, the structure of the tert‐butyl borane complex was confirmed by single‐crystal X‐ray diffraction.  相似文献   

13.
Magnesium (Mg) and zinc (Zn) complexes incorporating tridentate anilido‐aldimine ligand, (E)‐2, 6‐diisopropyl‐N‐(2‐((2‐(piperidin‐1‐yl)ethylimino)methyl)phenyl)aniline ( AA Pip ‐H, 1 ), were synthesized and structurally characterized. The reaction of AA Pip ‐H ( 1 ) with MgnBu2 or ZnEt2 in equivalent proportions afforded the monomeric complex [( AA Pip )MgnBu] ( 2 ) or [( AA Pip )ZnEt] ( 3 ), respectively. The coordination modes of these complexes differ in the solid state: Mg complex 2 shows a four‐coordinated and distorted tetrahedral geometry, whereas Zn complex 3 adopts a trigonal planar geometry with a three‐coordinated Zn center. Complexes 2 and 3 are efficient catalysts for the ring‐opening polymerization of β‐butyrolactone (β‐BL) in the presence of 9‐anthracenemethanol (9‐AnOH). The polymerization of β‐BL with the Zn catalyst system is demonstrated in a living fashion with a narrow polydispersity index, PDI = 1.01–1.10. The number‐averaged molecular weight (Mn) of the produced poly(3‐hydroxybutyrate) (PHB) is quite close to the expected Mn over diverse molar ratios of monomer to 9‐AnOH. A greater ratio of monomer to alcohol catalyzed by Zn complex 3 served to form PHB with a large molecular weight (Mn > 60000). An effective method to prepare PHB‐b‐PCL and PEG‐b‐PHB by the ring‐opening copolymerization of β‐BL catalyzed by zinc complex 3 is reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
η3‐1,4,7,10‐tetraazacyclododecane molybdenum tricarbonyl reacts with allyl bromide and 3‐butenyl bromide in dimethylformamide in the presence of K2CO3 yielding 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane ( 1a ) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane ( 1b ), which on their part react with bromoacetic acid tert‐butyl ester in CH3CN to give 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid tert‐butyl ester ( 2a ) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid tert‐butyl ester ( 2b ), respectively. Compounds 2a and 2b are converted into the corresponding acids 1‐(2‐propenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid ( 4a ) (MPC) and 1‐(3‐butenyl)‐1,4,7,10‐tetraazacyclododecane‐4,7,10‐tris‐acetic acid ( 4b ) (MBC) via the trifluoroacetates 3a and 3b . Sm(NO3)3(H2O)6, LuCl3(THF)3, and TmCl3(H2O)6 react with 4a and 4b forming the lanthanide complexes Sm(MPC) ( 5 ), Lu(MPC) ( 6 ), Tm(MPC) ( 7a ) and Tm(MBC) ( 7b ). The IR as well as the 1H and 13C NMR spectra of the new compounds are reported and discussed.  相似文献   

15.
In this work, atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was successfully carried out at room temperature (25 °C) under 60Co γ‐irradiation environment. The polymerization proceeded smoothly with high conversion (>90%) within 7 h. The polymerizations kept the features of controlled radical polymerization: first‐order kinetics, well‐predetermined number‐average molecular weights (Mn,GPC), and narrow molecular weight distributions (Mw/Mn < 1.25). 1H NMR spectroscope and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry confirmed that poly(methyl methacrylate) (PMMA) chain was end‐capped by the initiator moieties. The Cu(II) concentration could reduce to 20 ppm level while keeping good control over molecular weights. This is the first successful example for the ATRP of MMA under 60Co γ‐irradiation at room temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
cis‐Selective polymerizations of isoprene with the catalysts composed of η5‐C5H4(R)TiCl3 (1; R?H, 2 ; tert‐Bu) and methylaluminoxane were investigated. Both catalysts showed remarkable catalytic activities for the polymerization of isoprene. The polymerization activities were strongly affected by the substituent introduced on cyclopentadienyl ring. Introduction of bulky tert‐butyl group was found to be effective for enhancement of polymerization activity, but the cis‐content of polyisoprene prepared by the 2 /MAO catalyst was lower than that by 1 /MAO catalyst. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1841–1844, 2004  相似文献   

17.
The X‐ray crystal structure of the title compound, [Zn(C2H5)(C24H40BN6)], or TptBu,MeZnEt [TptBu,Me is tris(3‐tert‐butyl‐5‐methylpyrazolyl)hydridoborate], reveals a distorted tetrahedral geometry around the Zn atom. The Zn center is coordinated by three N atoms of the borate ligand and by one C atom of the ethyl group. The present structure and other tetrahedral Tp zinc alkyl complexes are compared with similar Ttz ligands (Ttz is 1,2,4‐triazolylborate), but no major differences in the structures are noted, and it can be assumed that variation of the substitution pattern of Tp or Ttz ligands has little or no influence on the geometry of alkylzinc complexes. Refinement of the structure is complicated by a combination of metric pseudosymmetry and twinning. The metrics of the structure could also be represented in a double‐volume C‐centered orthorhombic unit cell, and the structure is twinned by one of the orthorhombic symmetry operators not present in the actual structure. The twinning lies on the borderline between pseudomerohedral and nonmerohedral. The data were refined as being nonmerohedrally twinned, pseudomerohedrally twinned and untwinned. None of the approaches yielded results that were unambiguously better than any of the others: the best fit between structural model and data was observed using the nonmerohedral approach which also yielded the best structure quality indicators, but the data set is less than 80% complete due to rejected data. The pseudomerohedral and the untwinned structures are complete, but relatively large residual electron densities that are not close to the metal center are found with values up to three times higher than in the nonmerohedral approach.  相似文献   

18.
(Z)‐3‐(1H‐Indol‐3‐yl)‐2‐(3‐thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)‐3‐[1‐(4‐tert‐butyl­benzyl)‐1H‐indol‐3‐yl]‐2‐(3‐thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base‐catalyzed reactions of the corresponding indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. 1H/13C NMR spectral data and X‐ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring‐flip disorder (ca 5.6%) was observed and modeled for (I).  相似文献   

19.
Crystals of hexa‐tert‐butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high‐temperature phase is replaced by a noncrystallographic twofold axis in the low‐temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri‐tert‐butylsilyl subunits there are six short repulsive intramolecular C—H...H—C contacts, with H...H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si—Si and Si—C bonds. The Si—Si bond length is 2.6863 (5) Å and the Si—C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si—Si and Si—C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H...H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2‐tetra‐tert‐butyl‐1,2‐diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si—Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C—Si—Si—C torsion angles deviate by between −3.4 (1) and −18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si—C(t‐Bu) bonds are almost staggered, while the other four Si—C(t‐Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si—C(t‐Bu) bonds are about 0.019 (2) Å longer than the staggered Si—C(t‐Bu) bonds.  相似文献   

20.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号