首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen sulfide (H2S) has emerged as an important gasotransmitter in diverse physiological processes, although many aspects of its roles remain unclear, partly owing to a lack of robust analytical methods. Herein we report a novel surface‐enhanced Raman scattering (SERS) nanosensor, 4‐acetamidobenzenesulfonyl azide‐functionalized gold nanoparticles (AuNPs/4‐AA), for detecting the endogenous H2S in living cells. The detection is accomplished with SERS spectrum changes of AuNPs/4‐AA resulting from the reaction of H2S with 4‐AA on AuNPs. The SERS nanosensor exhibits high selectivity toward H2S. Furthermore, AuNPs/4‐AA responds to H2S within 1 min with a 0.1 μM level of sensitivity. In particular, our SERS method can be utilized to monitor the endogenous H2S generated in living glioma cells, demonstrating its great promise in studies of pathophysiological pathways involving H2S.  相似文献   

2.
3.
4.
Cryosurgery has attracted much attention for the treatment of tumors owing to its clear advantages. However, determining the volume of frozen tissues in real‐time remains a challenge, which greatly lowers the therapeutic efficacy of cryosurgery and hinders its broad application for the treatment of cancers. Herein, we report a freezing‐induced turn‐on strategy for the selective real‐time imaging of frozen cancer cells. As a type of aggregation‐induced emission (AIE) fluorogen, TABD‐Py molecules interact specifically with ice crystals and form aggregates at the ice/water interface. Consequently, bright fluorescent emission appears upon freezing. TABD‐Py molecules are enriched mostly in the cancer cells and exhibit high biocompatibility as well as low cytotoxicity; therefore, a freezing‐induced turn‐on imaging modality for cryosurgery is developed, which will certainly maximize the therapeutic efficacy of cryosurgery in treating tumors.  相似文献   

5.
Simple, sensitive, and selective detection of specific biopolymers is critical in a broad range of biomedical and technological areas. We present a design of turn‐on near‐infrared (NIR) fluorescent probes with intrinsically high signal‐to‐background ratio. The fluorescent signal generation mechanism is based on the aggregation/de‐aggregation of phthalocyanine chromophores controlled by selective binding of small‐molecule “anchor” groups to a specific binding site of a target biopolymer. As a proof‐of‐concept, we demonstrate a design of a sensor for EGFR tyrosine kinase—an important target in cancer research. The universality of the fluorescent signal generation mechanism, as well as the dependence of the response selectivity on the choice of the small‐molecule “anchor” group, make it possible to use this approach to design reliable turn‐on NIR fluorescent sensors for detecting specific protein targets present in the low‐nanomolar concentration range.  相似文献   

6.
We have developed a series of new ultrafluorogenic probes in the blue‐green region of the visible‐light spectrum that display fluorescence enhancement exceeding 11 000‐fold. These fluorogenic dyes integrate a coumarin fluorochrome with the bioorthogonal trans‐cyclooctene(TCO)–tetrazine chemistry platform. By exploiting highly efficient through‐bond energy transfer (TBET), these probes exhibit the highest brightness enhancements reported for any bioorthogonal fluorogenic dyes. No‐wash, fluorogenic imaging of diverse targets including cell‐surface receptors in cancer cells, mitochondria, and the actin cytoskeleton is possible within seconds, with minimal background signal and no appreciable nonspecific binding, opening the possibility for in vivo sensing.  相似文献   

7.
Azanone (HNO) is a reactive nitrogen species with pronounced biological activity and high therapeutic potential for cardiovascular dysfunction. A critical barrier to understanding the biology of HNO and furthering clinical development is the quantification and real‐time monitoring of its delivery in living systems. Herein, we describe the design and synthesis of the first chemiluminescent probe for HNO, HNOCL‐1 , which can detect HNO generated from concentrations of Angeli's salt as low as 138 nm with high selectivity based on the reaction with a phosphine group to form a self‐cleavable azaylide intermediate. We have capitalized on this high sensitivity to develop a generalizable kinetics‐based approach, which provides real‐time quantitative measurements of HNO concentration at the picomolar level. HNOCL‐1 can monitor dynamics of HNO delivery in living cells and tissues, demonstrating the versatility of this method for tracking HNO in living systems.  相似文献   

8.
Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor. Interlacing network of Au NTs endows the sensor with desirable stability against mechanical deformation, and Au nanostructure provides excellent electrochemical performance and biocompatibility. This allows for the first time, real‐time electrochemical monitoring of mechanically sensitive cells on the sensor both in their stretching‐free and stretching states as well as sensing of the inner lining of blood vessels. The results demonstrate the great potential of this sensor in electrochemical detection of living body, opening a new window for stretchable electrochemical sensor in biological exploration.  相似文献   

9.
The hydroxyl radical (.OH), one of the most reactive and deleterious reactive oxygen species (ROS), has been suggested to play an essential role in many physiological and pathological scenarios. However, a reliable and robust method to detect endogenous .OH is currently lacking owing to its extremely high reactivity and short lifetime. Herein we report a fluorescent probe HKOH‐1 with superior in vitro selectivity and sensitivity towards .OH. With this probe, we have calibrated and quantified the scavenging capacities of a wide range of reported .OH scavengers. Furthermore, HKOH‐1r, which was designed for better cellular uptake and retention, has performed robustly in detection of endogenous .OH generation by both confocal imaging and flow cytometry. Furthermore, this probe has been applied to monitor .OH generation in HeLa cells in response to UV light irradiation. Therefore, HKOH‐1 could be used for elucidating .OH related biological functions.  相似文献   

10.
Highly biocompatible and highly photostable fluorescent carbon dots (C dots) were obtained through a simple and nontoxic one‐pot hydrothermal method. Polyvinylpyrrolidone, a common and low‐cost biocompatibility reagent, was used as the only carbon source for the first time. The resulting water‐soluble C dots showed a quantum yield of up to 23.58 % with low cytotoxicity, favorable photoluminescent properties, and good photostability. Importantly, the fluorescence intensities of the C dots were quite stable in high‐salt conditions and over a broad pH range (3.0–10.5). The as‐prepared C dots have been demonstrated to be an excellent probe for hydroxyl radicals sensing based on the fluorescence quenching with great sensitivity and specificity. This opens up a new application field for C dots.  相似文献   

11.
Selective and sensitive molecular probes for hydrogen peroxide (H2O2), which plays diverse roles in oxidative stress and redox signaling, are urgently needed to investigate the physiological and pathological effects of H2O2. A lack of reliable tools for in vivo imaging has hampered the development of H2O2 mediated therapeutics. By combining a specific tandem Payne/Dakin reaction with a chemiluminescent scaffold, H2O2‐CL‐510 was developed as a highly selective and sensitive probe for detection of H2O2 both in vitro and in vivo. A rapid 430‐fold enhancement of chemiluminescence was triggered directly by H2O2 without any laser excitation. Arsenic trioxide induced oxidative damage in leukemia was successfully detected. In particular, cerebral ischemia‐reperfusion injury‐induced H2O2 fluxes were visualized in rat brains using H2O2‐CL‐510 , providing a new chemical tool for real‐time monitoring of H2O2 dynamics in living animals.  相似文献   

12.
13.
The Diels–Alder reaction is one of the most important C?C bond‐forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio‐ and diastereoselectivity. The Diels–Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple‐turnover, stereoselectivity, and up to 1100‐fold rate acceleration. Here, a new generation of anthracene‐BODIPY‐based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93‐fold upon reaction with N‐pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme‐catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91 % de and >99 % ee. The stereochemistry of the major product was determined unambiguously by rotating‐frame nuclear Overhauser NMR spectroscopy (ROESY‐NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.  相似文献   

14.
The chemical biology of reactive sulfur species, including hydropolysulfides, has been a subject undergoing intense study in recent years, but further understanding of their “intact” function in living cells has been limited owing to a lack of appropriate analytical tools. In order to overcome this limitation, we developed a new type of fluorescent probe that reversibly and selectively reacts to hydropolysulfides. The probe enables live‐cell visualization and quantification of endogenous hydropolysulfides without interference from intrinsic thiol species such as glutathione. Additionally, real‐time reversible monitoring of oxidative‐stress‐induced fluctuation of intrinsic hydropolysulfides has been achieved with a temporal resolution on the order of seconds, a result which has not yet been realized using conventional methods. These results reveal the probe's versatility as a new fluorescence imaging tool to understand the function of intracellular hydropolysulfides.  相似文献   

15.
16.
17.
MGMT protein, which has been associated with resistance to antitumor alkylation drugs for many patients, is a very useful prognostic marker to provide a guide for therapeutic decisions. Considering the large number of cellular samples that have to be handled daily at the hospitals, it is thus important to develop a rapid and simple analytical method to distinguish MGMT activity in different types of cells. In this paper, we describe a MGMT‐activated fluorescence turn‐on probe for the rapid no‐wash imaging of MGMT in living cells. The probe consists of a specific MGMT suicide pseudosubstrate, O6‐benzyl‐guanine and an environment‐sensitive fluorophore, SBD. In the presence of MGMT, the enzyme transfers SBD to the protein active site where the hydrophobic surrounding causes the fluorophore to exhibit more than 50‐fold fluorescence enhancement. With this probe, bright fluorescence was observed for MGMT‐positive, Hela S3 and MCF‐7 cells, while MGMT‐deficient CHO cells displayed no fluorescence. We believe that this fluorescence activation probe design can also be extended to detect other transferases, for which there are still no effective methods to image them in living cells.  相似文献   

18.
Investigation of the physiological and pathological functions of formaldehyde (FA) are largely restricted by a lack of useful FA imaging agents, in particular, those that allow detection of FA in the context of living tissues. Herein, we present the rational design, synthesis, and photophysical property studies of the first two‐photon fluorescent FA probe, Na‐FA . Importantly, the highly desirable attributes of the probe Na‐FA (such as a very large turn‐on signal (up to 900‐fold), a low detection limit, and a very fast onset imparted by the unique design aspects of the probe), make it possible to monitor endogenous FA in living tissues for the first time. Furthermore, sodium bisulfite was identified as a simple and convenient inhibitor of FA within biological environments.  相似文献   

19.
A new type of fluorescent probes for thiophenols, 6HQM‐DNP and 7HQM‐DNP, containing 6‐ or 7‐hydroxy quinonlinium as fluorophore and 2,4‐dinitrophenoxy (DNP) as nucleophilic recognition unit were constructed. As ethers, these non‐fluorescent probe molecules can release the corresponding fluorescent quinolinium (6HQM and 7HQM) through aromatic nucleophilic substitution (SNAr) by thiolate anions from thiophenols. The sensing reaction is highly sensitive (detection limit of 8 nM for 7HQM‐DNP) and highly selective to thiophenols over aliphatic thiols and other nucleophiles under neutral conditions (pH 7.3). The probes respond rapidly to thiophenols, with second‐order rate constants k=45 M ?1 s?1 for 7HQM‐DNP and 24 M ?1 s?1 for 6HQM‐DNP. Furthermore, the selective detection of thiophenols in living cells by 7HQM‐DNP was demonstrated by confocal fluorescence imaging. In addition, these quinolinium salts show excellent chemical and thermal stability. In conclusion, this type of probes may find use in the detection of thiophenols in environmental samples and biosystems.  相似文献   

20.
Herein, highly luminescent CdSe quantum dots (QDs) with emissions from the blue to the red region of visible light were synthesized by using a simple method. The emission range of the CdSe QDs could be tuned from λ=503 to 606 nm by controlling the size of the CdSe QDs. Two amino acids, L ‐tryptophan (L ‐Trp) and L ‐arginine (L ‐Arg), were used as coating agents. The quantum yield (QY) of CdSe QDs (green color) with an optimized thickness could reach up to 52 %. The structures and compositions of QDs were examined by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Optical properties were studied by using UV/Vis and photoluminescence (PL) spectroscopy and a comparison was made between uncoated and coated CdSe QDs. The amino acid‐modified β‐cyclodextrin (CD)‐coated CdSe QDs presented lower cytotoxicity to cells for 48 h. Furthermore, amino acid‐modified β‐CD‐coated green CdSe QDs in HepG2 cells were assessed by using confocal laser scanning fluorescence microscopy. The results showed that amino acid‐modified β‐CD‐coated green CdSe QDs could enter tumor cells efficiently and indicated that biomolecule‐coated QDs could be used as a potential fluorescent probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号